Ordering and measuring actuarial risks

Jan Dhaene
K.U.Leuven, Belgium

April, 2009
1. Introduction: sums of r.v.’s

- Many problems in risk theory involve sums of r.v.’s:
 \[S = X_1 + X_2 + \cdots + X_n \]

- Standard techniques for (approx.) evaluation of the d.f. of \(S \):
 Convolution, moment-based approximations, recursions.

- Assuming independence of the \(X_i \) is often not appropriate:
 - Introducing stochastic financial aspects.
 - Non-independence of remaining lifetimes.

- The copula approach: (Frees & Valdez, 1998)
 \[\Pr [X_1 \leq x_1, \ldots, X_n \leq x_n] = C [F_{X_1}(x_1), \ldots, F_{X_n}(x_n)] \]
1. Introduction: sums of r.v.’s

- Many problems in risk theory involve sums of r.v.’s:
 \[S = X_1 + X_2 + \cdots + X_n \]

- Standard techniques for (approx.) evaluation of the d.f. of \(S \):
 Convolution, moment-based approximations, recursions.

- Assuming independence of the \(X_i \) is often not appropriate:
 - Introducing stochastic financial aspects.
 - Non-independence of remaining lifetimes.

- The copula approach: (Frees & Valdez, 1998)
 \[\Pr [X_1 \leq x_1, \ldots, X_n \leq x_n] = C [F_{X_1}(x_1), \ldots, F_{X_n}(x_n)] \]
1. Introduction: sums of r.v.’s

- Many problems in risk theory involve sums of r.v.’s:
 \[
 S = X_1 + X_2 + \cdots + X_n
 \]

- Standard techniques for (approx.) evaluation of the d.f. of \(S \):
 Convolution, moment-based approximations, recursions.

- Assuming independence of the \(X_i \) is often not appropriate:
 - Introducing stochastic financial aspects.
 - Non-independence of remaining lifetimes.

- The copula approach: (Frees & Valdez, 1998)
 \[
 \Pr [X_1 \leq x_1, \ldots, X_n \leq x_n] = C [F_{X_1}(x_1), \ldots, F_{X_n}(x_n)]
 \]
1. Introduction: sums of r.v.’s

- Many problems in risk theory involve sums of r.v.’s:

\[S = X_1 + X_2 + \cdots + X_n \]

- Standard techniques for (approx.) evaluation of the d.f. of \(S \): Convolution, moment-based approximations, recursions.

- Assuming independence of the \(X_i \) is often not appropriate:
 - Introducing stochastic financial aspects.
 - Non-independence of remaining lifetimes.

- The copula approach: (Frees & Valdez, 1998)

\[\Pr [X_1 \leq x_1, \ldots, X_n \leq x_n] = C [F_{X_1}(x_1), \ldots, F_{X_n}(x_n)] \]
1. Introduction: sums of r.v.’s

- Many problems in risk theory involve sums of r.v.’s:
 \[S = X_1 + X_2 + \cdots + X_n \]

- Standard techniques for (approx.) evaluation of the d.f. of \(S \): Convolution, moment-based approximations, recursions.

- Assuming independence of the \(X_i \) is often not appropriate:
 - Introducing stochastic financial aspects.
 - Non-independence of remaining lifetimes.

- The copula approach: (Frees & Valdez, 1998)
 \[\Pr [X_1 \leq x_1, \ldots, X_n \leq x_n] = C [F_{X_1}(x_1), \ldots, F_{X_n}(x_n)] \]
1. Introduction: sums of r.v.’s

- Many problems in risk theory involve sums of r.v.’s:
 \[S = X_1 + X_2 + \cdots + X_n \]

- Standard techniques for (approx.) evaluation of the d.f. of \(S \):
 Convolution, moment-based approximations, recursions.

- Assuming independence of the \(X_i \) is often not appropriate:
 - Introducing stochastic financial aspects.
 - Non-independence of remaining lifetimes.

- The copula approach: (Frees & Valdez, 1998)
 \[\Pr [X_1 \leq x_1, \ldots, X_n \leq x_n] = C [F_{X_1}(x_1), \ldots, F_{X_n}(x_n)] \]
1. Introduction: sums of r.v.’s (cont’d)

- **Problem to solve:**
 - Summarize $S = X_1 + X_2 + \ldots + X_n$ into a real number $\rho[S]$.
 - Suppose: F_{X_i} known, n large, C complicated / unknown.

- **How to solve?**
 - Derive stochastic lower and upper bounds for S:
 \[
 S^l \preceq S \preceq S^u
 \]
 - Approximate $\rho[S]$ by $\rho[S^u]$ or $\rho[S^l]$.
 - **Required tools:**
 - Risk measures
 - Convex order
1. Introduction: sums of r.v.’s (cont’d)

- **Problem to solve:**
 - Summarize $S = X_1 + X_2 + \ldots + X_n$ into a real number $\rho [S]$.
 - Suppose: F_{X_i} known, n large, C complicated / unknown.

- **How to solve?**
 - Derive stochastic lower and upper bounds for S:
 $$S^l \preceq S \preceq S^u$$
 - Approximate $\rho [S]$ by $\rho [S^u]$ or $\rho [S^l]$.

- **Required tools:**
 - Risk measures.
 - Convex order.
1. Introduction: sums of r.v.’s (cont’d)

- **Problem to solve:**
 - Summarize $S = X_1 + X_2 + \ldots + X_n$ into a real number $\rho[S]$.
 - Suppose: F_{X_i} known, n large, C complicated / unknown.

- **How to solve?**
 - Derive stochastic lower and upper bounds for S:

 $$S^l \preceq S \preceq S^u$$

 - Approximate $\rho[S]$ by $\rho[S^u]$ or $\rho[S^l]$.
 - **Required tools:**
 - Risk measures
 - Convex order
1. Introduction: sums of r.v.’s (cont’d)

- **Problem to solve:**
 - Summarize $S = X_1 + X_2 + \ldots + X_n$ into a real number $\rho[S]$.
 - Suppose: F_{X_i} known, n large, C complicated / unknown.

- **How to solve?**
 - Derive stochastic lower and upper bounds for S:
 $$ S^l \preceq S \preceq S^u $$
 - Approximate $\rho[S]$ by $\rho[S^u]$ or $\rho[S^l]$.
 - **Required tools:**
 - Risk measures.
 - Convex order.
1. Introduction: sums of r.v.’s (cont’d)

- **Problem to solve:**
 - Summarize $S = X_1 + X_2 + \ldots + X_n$ into a real number $\rho[S]$.
 - Suppose: F_{X_i} known, n large, C complicated / unknown.

- **How to solve?**
 - Derive stochastic lower and upper bounds for S:
 $$ S^l \preceq S \preceq S^u $$
 - Approximate $\rho[S]$ by $\rho[S^u]$ or $\rho[S^l]$.
 - **Required tools:**
 - Risk measures.
 - Convex order.
1. Introduction: sums of r.v.’s (cont’d)

- **Problem to solve:**
 - Summarize $S = X_1 + X_2 + \ldots + X_n$ into a real number $\rho[S]$.
 - Suppose: F_{X_i} known, n large, C complicated / unknown.

- **How to solve?**
 - Derive stochastic lower and upper bounds for S:
 \[S^l \lesssim S \lesssim S^u \]
 - Approximate $\rho[S]$ by $\rho[S^u]$ or $\rho[S^l]$.

- **Required tools:**
 - Risk measures.
 - Convex order.
1. Introduction: sums of r.v.'s (cont’d)

- **Problem to solve:**
 - Summarize $S = X_1 + X_2 + \ldots + X_n$ into a real number $\rho[S]$.
 - Suppose: F_{X_i} known, n large, C complicated / unknown.

- **How to solve?**
 - Derive stochastic lower and upper bounds for S:
 $$ S^l \preceq S \preceq S^u $$
 - Approximate $\rho[S]$ by $\rho[S^u]$ or $\rho[S^l]$.

- **Required tools:**
 - Risk measures.
 - Convex order.
1. Introduction: sums of r.v.’s (cont’d)

- **Problem to solve:**
 - Summarize $S = X_1 + X_2 + \ldots + X_n$ into a real number $\rho[S]$.
 - Suppose: F_{X_i} known, n large, C complicated / unknown.

- **How to solve?**
 - Derive stochastic lower and upper bounds for S:
 $$S^l \preceq S \preceq S^u$$
 - Approximate $\rho[S]$ by $\rho[S^u]$ or $\rho[S^l]$.

- **Required tools:**
 - Risk measures.
 - Convex order.
1. Introduction: sums of r.v.’s (cont’d)

- **Problem to solve:**
 - Summarize $S = X_1 + X_2 + \ldots + X_n$ into a real number $\rho[S]$.
 - Suppose: F_{X_i} known, n large, C complicated / unknown.

- **How to solve?**
 - Derive stochastic lower and upper bounds for S:
 \[S^l \preceq S \preceq S^u \]
 - Approximate $\rho[S]$ by $\rho[S^u]$ or $\rho[S^l]$.
 - **Required tools:**
 - Risk measures.
 - Convex order.
2. Risk measures

2.1. General

Definition:
A risk measure is a mapping from a set of losses to the real line:

\[X \rightarrow \rho [X] \]

Have been investigated extensively in the literature:

- Huber (1981):
 Upper expectations.
- Goovaerts, De Vylder & Haezendonck (1984):
 Premium principles.
- Artzner, Delbaen, Eber & Heath (1999):
 Coherent risk measures.
2. Risk measures

2.1. General

Definition:
A risk measure is a mapping from a set of losses to the real line:

\[X \rightarrow \rho [X] \]

Have been investigated extensively in the literature:

- Huber (1981):
 Upper expectations.
- Goovaerts, De Vylder & Haezendonck (1984):
 Premium principles.
- Artzner, Delbaen, Eber & Heath (1999):
 Coherent risk measures.
2. Risk measures

2.1. General

- **Definition:**
 A risk measure is a mapping from a set of losses to the real line:

 \[X \rightarrow \rho[X] \]

- **Have been investigated extensively in the literature:**
 - **Huber (1981):**
 Upper expectations.
 - **Goovaerts, De Vylder & Haezendonck (1984):**
 Premium principles.
 - **Artzner, Delbaen, Eber & Heath (1999):**
 Coherent risk measures.
2. Risk measures

2.1. General

- **Definition:**
 A risk measure is a mapping from a set of losses to the real line:

 \[X \rightarrow \rho [X] \]

- Have been investigated extensively in the literature:
 - Huber (1981):
 Upper expectations.
 - Goovaerts, De Vylder & Haezendonck (1984):
 Premium principles.
 - Artzner, Delbaen, Eber & Heath (1999):
 Coherent risk measures.
2. Risk measures

2.1. General

Definition:
A risk measure is a mapping from a set of losses to the real line:

\[X \rightarrow \rho [X] \]

Have been investigated extensively in the literature:

- **Huber (1981):**
 Upper expectations.

- **Goovaerts, De Vylder & Haezendonck (1984):**
 Premium principles.

- **Artzner, Delbaen, Eber & Heath (1999):**
 Coherent risk measures.
2. Risk measures

2.2. Distortion risk measures

- $\bar{F}_X(x) = \Pr[X > x]$.
- $E[X] = I - \Pi$.

![Diagram showing the relationship between $\bar{F}_X(x)$ and the expected value $E[X]$]
2. Risk measures

2.2. Distortion risk measures

- \(\overline{F}_X(x) = \Pr [X > x] \).
- \(E[X] = I - II \).
2. Risk measures

2.2. Distortion risk measures (cont’d)

- **Distortion function:**

 \(g(x) \) is nondecreasing, \(g(0) = 0 \) and \(g(1) = 1 \).

- **Distortion risk measure:** \(\rho_g[X] \overset{\text{def.}}{=} (I + I') - II \).

- In case \(g(x) \geq x \): \(\rho_g[X] \geq E[X] \).
2. Risk measures

2.2. Distortion risk measures (cont’d)

- **Distortion function:**
 \(g(x) \) is nondecreasing, \(g(0) = 0 \) and \(g(1) = 1 \).

- **Distortion risk measure:**
 \(\rho_g [X] \overset{\text{def.}}{=} (I + I') - II \).

- In case \(g(x) \geq x \):
 \(\rho_g [X] \geq E[X] \).
2. Risk measures

2.2. Distortion risk measures (cont’d)

- **Distortion function:**
 \[g(x) \text{ is nondecreasing, } g(0) = 0 \text{ and } g(1) = 1. \]

- **Distortion risk measure:**
 \[\rho_g [X] \overset{\text{def.}}{=}(I + I’) - II. \]

- **In case** \(g(x) \geq x \): \[\rho_g [X] \geq E[X]. \]
2. Risk measures

2.3. Value-at-Risk

- VaR\(_p[X]\) = \(F_X^{-1}(p) = Q_p[X]\).
- Distortion function:

\[g(x) = 1 \ (x > 1 - p) \]
2. Risk measures

2.3. Value-at-Risk

- \(\text{VaR}_p[X] = F_X^{-1}(p) = Q_p[X] \).
- **Distortion function:**

\[
g(x) = \mathbb{1}(x > 1 - p)
\]
2. Risk measures

2.4. Tail Value-at-Risk

- TVaR$_p (X) = \frac{1}{1-p} \int_p^1 \text{VaR}_q [X] \ dq$.
- Distortion function:

\[g(x) = \min \left(\frac{x}{1-p}, 1 \right) \]
2. Risk measures

2.4. Tail Value-at-Risk

- **TVaR}_p(X) = \frac{1}{1-p} \int_p^1 \text{VaR}_q[X] \ dq.
- **Distortion function:**

\[g(x) = \min \left(\frac{x}{1-p}, 1 \right) \]
2. Risk measures

2.5. Concave distortion risk measures

- \(\rho_g [X] = \int_0^1 \text{VaR}_{1-q} [X] \ dg(q) \).
- \(\rho_g \) is a concave distortion risk measure if \(g \) is concave.
- TVaR\(p \) is concave, VaR\(p \) not.
- Concave distortion risk measures are subadditive:

\[
\rho_g [X + Y] \leq \rho_g [X] + \rho_g [Y]
\]

- Optimality of VaR\(p \): (Artzner et al. 1999)
 \[
 \text{VaR}_p [X] = \inf \{ \rho([X] | \rho \text{ is coherent and } \rho \geq \text{VaR}_p) \}
 \]

- Optimality of TVaR\(p \):
 \[
 \text{TVaR}_p [X] = \min \{ \rho_g ([X] | g \text{ is concave and } \rho_g \geq \text{VaR}_p) \}
 \]
2. Risk measures

2.5. Concave distortion risk measures

- $\rho_g[X] = \int_0^1 \text{VaR}_1 - q[X] \, dg(q)$.
- ρ_g is a concave distortion risk measure if g is concave.
- TVaR$_p$ is concave, VaR$_p$ not.
- Concave distortion risk measures are subadditive:

$$\rho_g[X + Y] \leq \rho_g[X] + \rho_g[Y]$$

- Optimality of VaR$_p$: (Artzner et al. 1999)

$$\text{VaR}_p[X] = \inf \{\rho([X] \mid \rho \text{ is coherent and } \rho \geq \text{VaR}_p\}$$

- Optimality of TVaR$_p$:

$$\text{TVaR}_p[X] = \min \{\rho_g([X] \mid g \text{ is concave and } \rho_g \geq \text{VaR}_p\}$$
2. Risk measures

2.5. Concave distortion risk measures

- \(\rho_g [X] = \int_0^1 \text{VaR}_{1-q} [X] \ dg(q) \).
- \(\rho_g \) is a concave distortion risk measure if \(g \) is concave.
- TVaR\(_p\) is concave, VaR\(_p\) not.
- Concave distortion risk measures are subadditive:

\[
\rho_g [X + Y] \leq \rho_g [X] + \rho_g [Y]
\]

- Optimality of VaR\(_p\): (Artzner et al. 1999)

\[
\text{VaR}_p[X] = \inf \{ \rho([X] \mid \rho \text{ is coherent and } \rho \geq \text{VaR}_p) \}
\]

- Optimality of TVaR\(_p\):

\[
\text{TVaR}_p[X] = \min \{ \rho_g ([X] \mid g \text{ is concave and } \rho_g \geq \text{VaR}_p) \}
\]
2. Risk measures

2.5. Concave distortion risk measures

- $\rho_g[X] = \int_0^1 \text{VaR}_{1-q}[X] \ dg(q)$.
- ρ_g is a concave distortion risk measure if g is concave.
- TVaR$_p$ is concave, VaR$_p$ not.
- Concave distortion risk measures are subadditive:

\[
\rho_g[X + Y] \leq \rho_g[X] + \rho_g[Y]
\]

- Optimality of VaR$_p$: (Artzner et al. 1999)

\[
\text{VaR}_p[X] = \inf \{ \rho([X] \mid \rho \text{ is coherent and } \rho \geq \text{VaR}_p) \}
\]

- Optimality of TVaR$_p$:

\[
\text{TVaR}_p[X] = \min \left\{ \rho_g([X] \mid g \text{ is concave and } \rho_g \geq \text{VaR}_p) \right\}
\]
2. Risk measures

2.5. Concave distortion risk measures

- \(\rho_g[X] = \int_0^1 \text{VaR}_{1-q}[X] \, dg(q) \).
- \(\rho_g \) is a concave distortion risk measure if \(g \) is concave.
- TVaR\(_p\) is concave, VaR\(_p\) not.
- Concave distortion risk measures are subadditive:

\[
\rho_g[X + Y] \leq \rho_g[X] + \rho_g[Y]
\]

- **Optimality of VaR\(_p\):** (Artzner et al. 1999)

\[
\text{VaR}_p[X] = \inf \{ \rho([X] \mid \rho \text{ is coherent and } \rho \geq \text{VaR}_p) \}
\]

- **Optimality of TVaR\(_p\):**

\[
\text{TVaR}_p[X] = \min \{ \rho_g([X] \mid g \text{ is concave and } \rho_g \geq \text{VaR}_p) \}
\]
2. Risk measures

2.5. Concave distortion risk measures

- \(\rho_g [X] = \int_0^1 \text{VaR}_{1-q} [X] \ dg(q) \).
- \(\rho_g \) is a concave distortion risk measure if \(g \) is concave.
- TVaR\(_p\) is concave, VaR\(_p\) not.
- Concave distortion risk measures are subadditive:

\[
\rho_g [X + Y] \leq \rho_g [X] + \rho_g [Y]
\]

- Optimality of VaR\(_p\):
 (Artzner et al. 1999)

\[
\text{VaR}_p[X] = \inf \left\{ \rho([X] \mid \rho \text{ is coherent and } \rho \geq \text{VaR}_p) \right\}
\]

- Optimality of TVaR\(_p\):

\[
\text{TVaR}_p[X] = \min \left\{ \rho_g ([X] \mid g \text{ is concave and } \rho_g \geq \text{VaR}_p) \right\}
\]
3. Optimality of VaR
(D., Goovaerts & Kaas, 2003)

- Consider a loss \(X \) and a solvency capital requirement \(\rho [X] \).

- The insolvency risk and the cost of insolvency:
 \[
 (X - \rho [X])_+ \quad \rightarrow \quad E \left[(X - \rho [X])_+ \right]
 \]

- The cost of capital:
 \(\rho [X] \times i \)

- How to choose \(\rho [X] \)?
 - \(E \left[(X - \rho [X])_+ \right] \) should be small \(\Rightarrow \) \(\rho [X] \) large.
 - Capital has a cost \(\Rightarrow \) \(\rho [X] \) small.
3. Optimality of VaR
(D., Goovaerts & Kaas, 2003)

- Consider a loss X and a solvency capital requirement $\rho[X]$.
- The insolvency risk and the cost of insolvency:

$$ (X - \rho[X])_+ \rightarrow \mathbb{E} [(X - \rho[X])_+] $$

- The cost of capital:

$$ \rho[X] \times i $$

- How to choose $\rho[X]$?
 - $\mathbb{E} [(X - \rho[X])_+]$ should be small $\Rightarrow \rho[X]$ large.
 - Capital has a cost $\Rightarrow \rho[X]$ small.
3. Optimality of VaR
(D., Goovaerts & Kaas, 2003)

- Consider a loss X and a solvency capital requirement $\rho [X]$.
- The insolvency risk and the cost of insolvency:

$$ (X - \rho [X])_+ \longrightarrow E [(X - \rho [X])_+] $$

- The cost of capital:

$$ \rho [X] \times i $$

- How to choose $\rho [X]$?
 - $E [(X - \rho [X])_+]$ should be small $\Rightarrow \rho [X]$ large.
 - Capital has a cost $\Rightarrow \rho [X]$ small.
3. Optimality of VaR
(D., Goovaerts & Kaas, 2003)

- Consider a loss X and a solvency capital requirement $\rho [X]$.
- The insolvency risk and the cost of insolvency:

 $$ (X - \rho [X])_+ \rightarrow E [(X - \rho [X])_+] $$

- The cost of capital:

 $$ \rho [X] \times i $$

- How to choose $\rho [X]$?
 - $E [(X - \rho [X])_+]$ should be small \Rightarrow $\rho [X]$ large.
 - Capital has a cost \Rightarrow $\rho [X]$ small.
3. Optimality of VaR
(D., Goovaerts & Kaas, 2003)

- Consider a loss X and a solvency capital requirement $\rho[X]$.
- The insolvency risk and the cost of insolvency:

 $$(X - \rho[X])_+ \rightarrow \mathbb{E}[(X - \rho[X])_+]$$

- The cost of capital:

 $\rho[X] \times i$

- How to choose $\rho[X]$?
 - $\mathbb{E}[(X - \rho[X])_+]$ should be small $\Rightarrow \rho[X]$ large.
 - Capital has a cost $\Rightarrow \rho[X]$ small.
3. Optimality of VaR
(D., Goovaerts & Kaas, 2003)

- Consider a loss X and a solvency capital requirement $\rho [X]$.
- The insolvency risk and the cost of insolvency:

$$ (X - \rho [X])_+ \rightarrow \mathbb{E} [(X - \rho [X])_+] $$

- The cost of capital:

$$ \rho [X] \times i $$

- How to choose $\rho [X]$?
 - $\mathbb{E} [(X - \rho [X])_+]$ should be small $\Rightarrow \rho [X]$ large.
 - Capital has a cost $\Rightarrow \rho [X]$ small.
3. Optimality of VaR (cont’d)

- The optimal capital requirement: \(\rho[X] \) is determined as the minimizer (with respect to \(d \)) of

\[
E[(X - d)_+] + d \varepsilon, \quad 0 < \varepsilon < 1
\]

- Solution:

\[
\rho[X] = \text{VaR}_{1-\varepsilon}[X]
\]

- The minimum of the cost function is given by \(\varepsilon \text{ TVaR}_{1-\varepsilon}[X] \).

- Geometric proof (for \(\text{VaR}_{1-\varepsilon}[X] > 0 \)):

The optimal capital requirement: \(\rho[X] \) is determined as the minimizer (with respect to \(d \)) of

\[
E [(X - d)_+] + d \varepsilon, \quad 0 < \varepsilon < 1
\]

Solution:

\[
\rho[X] = \text{VaR}_{1-\varepsilon}[X]
\]

The minimum of the cost function is given by \(\varepsilon \text{ TVaR}_{1-\varepsilon}[X] \).

Geometric proof (for \(\text{VaR}_{1-\varepsilon}[X] > 0 \)):
3. Optimality of VaR (cont’d)

- The optimal capital requirement:
 $\rho[X]$ is determined as the minimizer (with respect to d) of
 $$E[(X - d)_+] + d \varepsilon, \quad 0 < \varepsilon < 1$$

- Solution:
 $$\rho[X] = \text{VaR}_{1-\varepsilon}[X]$$

- The minimum of the cost function is given by $\varepsilon \text{TVaR}_{1-\varepsilon}[X]$.

- Geometric proof (for $\text{VaR}_{1-\varepsilon}[X] > 0$):
3. Optimality of VaR (cont’d)

- The optimal capital requirement: $\rho[X]$ is determined as the minimizer (with respect to d) of
 \[\mathbb{E}[(X - d)_+] + d \varepsilon, \quad 0 < \varepsilon < 1 \]

- Solution:
 \[\rho[X] = \text{VaR}_{1-\varepsilon}[X] \]

- The minimum of the cost function is given by $\varepsilon \text{TVaR}_{1-\varepsilon}[X]$.

- Geometric proof (for $\text{VaR}_{1-\varepsilon}[X] > 0$):
3. Optimality of VaR (cont’d)

- $\mathbb{E}[(X - d)_+] + d \varepsilon$ in case $d = Q_{1-\varepsilon}[X]$:
3. Optimality of VaR (cont’d)

- \(E[(X - d)_+] + d \varepsilon \) in case \(d < Q_{1-\varepsilon} [X] \):
3. Optimality of VaR (cont’d)

- \(E[(X - d)_+] + d \epsilon \) in case \(d > Q_{1-\epsilon}[X] \):
4. Can a risk measure be too subadditive?
(D., Laeven, Vanduffel, Darkiewicz & Goovaerts, 2008)

- In case the capital requirement ρ is additive:

$$ (X + Y - \rho[X + Y])_+ \leq (X - \rho[X])_+ + (Y - \rho[Y])_+ $$

- Splitting increases the insolvency risk.

 - ρ should be subadditive:

 $$ \rho[X + Y] \leq \rho[X] + \rho[Y] $$

- Merging decreases the insolvency risk.

 - Subadditivity of ρ is allowed to some extent.
 - Without any restriction, ρ could be too subadditive.

- In case the capital requirement ρ is additive:

$$
(X + Y - \rho[X + Y])_+ \leq (X - \rho[X])_+ + (Y - \rho[Y])_+
$$

- **Splitting** increases the insolvency risk.
 - ρ should be subadditive:

$$
\rho[X + Y] \leq \rho[X] + \rho[Y]
$$

- **Merging** decreases the insolvency risk.
 - Subadditivity of ρ is allowed *to some extent.*
 - Without any restriction, ρ could be *too subadditive.*
4. Can a risk measure be too subadditive?

(D., Laeven, Vanduffel, Darkiewicz & Goovaerts, 2008)

- In case the capital requirement \(\rho \) is additive:

\[
(X + Y - \rho [X + Y])_+ \leq (X - \rho [X])_+ + (Y - \rho [Y])_+
\]

- **Splitting** increases the insolvency risk.
 - \(\rho \) should be subadditive:

\[
\rho [X + Y] \leq \rho [X] + \rho [Y]
\]

- **Merging** decreases the insolvency risk.
 - Subadditivity of \(\rho \) is allowed *to some extent*.
 - Without any restriction, \(\rho \) could be *too subadditive*.
4. Can a risk measure be too subadditive?
(D., Laeven, Vanduffel, Darkiewicz & Goovaerts, 2008)

- In case the capital requirement ρ is additive:
 \[
 (X + Y - \rho[X + Y])_+ \leq (X - \rho[X])_+ + (Y - \rho[Y])_+
 \]
- **Splitting** increases the insolvency risk.
 - ρ should be subadditive:
 \[
 \rho[X + Y] \leq \rho[X] + \rho[Y]
 \]
- **Merging** decreases the insolvency risk.
 - Subadditivity of ρ is allowed *to some extent*.
 - Without any restriction, ρ could be *too subadditive*.
4. Can a risk measure be too subadditive?
(D., Laeven, Vanduffel, Darkiewicz & Goovaerts, 2008)

- In case the capital requirement ρ is additive:

 \[
 (X + Y - \rho[X + Y])_+ \leq (X - \rho[X])_+ + (Y - \rho[Y])_+
 \]

- **Splitting** increases the insolvency risk.
 - ρ should be subadditive:
 \[
 \rho[X + Y] \leq \rho[X] + \rho[Y]
 \]

- **Merging** decreases the insolvency risk.
 - **Subadditivity of ρ is allowed *to some extent*.**
 - Without any restriction, ρ could be *too subadditive*.
4. Can a risk measure be too subadditive?
(D., Laeven, Vanduffel, Darkiewicz & Goovaerts, 2008)

- In case the capital requirement ρ is additive:

$$\left(X + Y - \rho[X + Y]\right)_+ \leq \left(X - \rho[X]\right)_+ + \left(Y - \rho[Y]\right)_+$$

- **Splitting** increases the insolvency risk.
 - ρ should be subadditive:
 $$\rho[X + Y] \leq \rho[X] + \rho[Y]$$

- **Merging** decreases the insolvency risk.
 - Subadditivity of ρ is allowed *to some extent*.
 - Without any restriction, ρ could be *too subadditive*.
4. Can a risk measure be too subadditive? (cont’d)

- The regulator’s condition for the capital requirement ρ:

$$
E \left[(X + Y - \rho[X + Y])_+ \right] + \varepsilon \rho[X + Y] \\
\leq E \left[(X - \rho[X])_+ \right] + E \left[(X - \rho[X])_+ \right] + \varepsilon (\rho[X] + \rho[Y])
$$

- $\text{VaR}_{1-\varepsilon}[\cdot]$ fulfills the regulator’s condition.
- Any subadditive $\rho[\cdot] \geq \text{VaR}_{1-\varepsilon}[\cdot]$ fulfills the regulator’s condition.
- Markowitz, 1959:
 'We might decide that in one context one basic set of principles is appropriate, while in another context a different set of principles should be used.'
4. Can a risk measure be too subadditive? (cont’d)

- The \textit{regulator’s condition} for the capital requirement ρ:

$$E \left[(X + Y - \rho[X + Y])_+ \right] + \varepsilon \rho[X + Y] \leq E \left[(X - \rho[X])_+ \right] + E \left[(X - \rho[X])_+ \right] + \varepsilon (\rho[X] + \rho[Y])$$

- VaR$_{1-\varepsilon}[\cdot]$ fulfills the regulator’s condition.

- Any subadditive $\rho[\cdot] \geq$ VaR$_{1-\varepsilon}[\cdot]$ fulfills the regulator’s condition.

- Markowitz, 1959:
 'We might decide that in one context one basic set of principles is appropriate, while in another context a different set of principles should be used.'
4. Can a risk measure be too subadditive? (cont’d)

- The *regulator’s condition* for the capital requirement ρ:

$$
E \left[(X + Y - \rho[X + Y])_+ \right] + \varepsilon \rho[X + Y] \\
\leq E \left[(X - \rho[X])_+ \right] + E \left[(X - \rho[X])_+ \right] + \varepsilon (\rho[X] + \rho[Y])
$$

- VaR$_{1-\varepsilon}[\cdot]$ fulfills the regulator’s condition.

- Any subadditive $\rho[\cdot] \geq$ VaR$_{1-\varepsilon}[\cdot]$ fulfills the regulator’s condition.

- Markowitz, 1959:
 ’We might decide that in one context one basic set of principles is appropriate, while in another context a different set of principles should be used.’
4. Can a risk measure be too subadditive? (cont’d)

- The *regulator’s condition* for the capital requirement ρ:

$$
E \left[(X + Y - \rho[X + Y])_+ \right] + \varepsilon \rho[X + Y] \\
\leq E \left[(X - \rho[X])_+ \right] + E \left[(X - \rho[X])_+ \right] + \varepsilon \left(\rho[X] + \rho[Y] \right)
$$

- $\text{VaR}_{1-\varepsilon}[\cdot]$ fulfills the regulator’s condition.

- Any subadditive $\rho[\cdot] \geq \text{VaR}_{1-\varepsilon}[\cdot]$ fulfills the regulator’s condition.

- Markowitz, 1959:
 ’We might decide that in one context one basic set of principles is appropriate, while in another context a different set of principles should be used.’
5. Comonotonicity

5.1. General

- **Definition:**
 \((X_1, \cdots, X_n)\) is **comonotonic** if there exists a r.v. \(Z\) and increasing functions \(f_1, \cdots, f_n\) such that
 \[
 (X_1, \cdots, X_n) \overset{d}{=}(f_1(Z), \ldots, f_n(Z))
 \]

- (\(X_1, \cdots, X_n\)) has a 1-dimensional stochasticity.
- Comonotonicity is very strong positive dependency structure.
- Adding comonotonic r.v.'s:
 - Produces no diversification.
 - If all \(X_i\) are identically distributed and comonotonic, then
 \[
 \frac{X_1 + \cdots + X_n}{n} \overset{d}{=} X_1
 \]
5. Comonotonicity

5.1. General

▷ **Definition:**

\((X_1, \ldots, X_n)\) is **comonotonic** if there exists a r.v. \(Z\) and increasing functions \(f_1, \ldots, f_n\) such that

\[
(X_1, \ldots, X_n) \overset{d}{=} (f_1(Z), \ldots, f_n(Z))
\]

▷ \((X_1, \ldots, X_n)\) has a 1-dimensional stochasticity.

▷ Comonotonicity is very strong positive dependency structure.

▷ Adding comonotonic r.v.’s:

- Produces no diversification.
- If all \(X_i\) are identically distributed and comonotonic, then

\[
\frac{X_1 + \cdots + X_n}{n} \overset{d}{=} X_1
\]
5. Comonotonicity

5.1. General

Definition:

\((X_1, \cdots, X_n)\) is comonotonic if there exists a r.v. \(Z\) and increasing functions \(f_1, \cdots, f_n\) such that

\[(X_1, \cdots, X_n) \overset{d}{=} (f_1(Z), \ldots, f_n(Z))\]

\((X_1, \cdots, X_n)\) has a 1-dimensional stochasticity.

Comonotonicity is very strong positive dependency structure.

Adding comonotonic r.v.’s:

\(\frac{X_1 + \cdots + X_n}{n} \overset{d}{=} X_1\)

Produces no diversification.

If all \(X_i\) are identically distributed and comonotonic, then
5. Comonotonicity

5.1. General

- **Definition:**

 \((X_1, \ldots, X_n)\) is **comonotonic** if there exists a r.v. \(Z\) and increasing functions \(f_1, \ldots, f_n\) such that

 \[
 (X_1, \ldots, X_n) \overset{d}{=} (f_1(Z), \ldots, f_n(Z))
 \]

- \((X_1, \ldots, X_n)\) has a 1-dimensional stochasticity.

- Comonotonicity is very strong positive dependency structure.

- **Adding comonotonic r.v.’s:**

 - Produces no diversification.
 - If all \(X_i\) are identically distributed and comonotonic, then

 \[
 \frac{X_1 + \cdots + X_n}{n} \overset{d}{=} X_1
 \]
5. Comonotonicity

5.1. General

- **Definition:**

 \((X_1, \cdots, X_n)\) is **comonotonic** if there exists a r.v. \(Z\) and increasing functions \(f_1, \cdots, f_n\) such that

 \[
 (X_1, \cdots, X_n) \overset{d}{=} (f_1(Z), \ldots, f_n(Z))
 \]

- \((X_1, \cdots, X_n)\) has a 1-dimensional stochasticity.
- Comonotonicity is very strong positive dependency structure.
- Adding comonotonic r.v.’s:
 - Produces no diversification.
 - If all \(X_i\) are identically distributed and comonotonic, then

 \[
 \frac{X_1 + \cdots + X_n}{n} \overset{d}{=} X_1
 \]
5. Comonotonicity

5.1. General

- **Definition:**

 \((X_1, \cdots, X_n)\) is **comonotonic** if there exists a r.v. \(Z\) and increasing functions \(f_1, \cdots, f_n\) such that

 \[
 (X_1, \cdots, X_n) \overset{d}{=} (f_1(Z), \ldots, f_n(Z))
 \]

- \((X_1, \cdots, X_n)\) has a 1-dimensional stochasticity.
- Comonotonicity is very strong positive dependency structure.
- Adding comonotonic r.v.’s:
 - Produces no diversification.
 - If all \(X_i\) are identically distributed and comonotonic, then

 \[
 \frac{X_1 + \cdots + X_n}{n} \overset{d}{=} X_1
 \]
5. Comonotonicity

5.2. An example

- Consider \((X, Y, Z)\) with
 \(X \sim \text{Uniform on } (0, \frac{1}{2}) \cup (1, \frac{3}{2})\)
 \(Y \sim \text{Beta (2,2)}\)
 \(Z \sim \text{Normal (0,1)}\).

- Support of \((X, Y, Z)\) when they are mutually independent:
5. Comonotonicity

5.2. An example

- Consider \((X, Y, Z)\) with
 \(X \sim\) Uniform on \((0, \frac{1}{2}) \cup (1, \frac{3}{2})\)
 \(Y \sim\) Beta (2,2)
 \(Z \sim\) Normal (0,1).

- Support of \((X, Y, Z)\) when they are mutually independent:
5. Comonotonicity

5.2. An example (cont’d)

- Consider \((X, Y, Z)\) with
 - \(X \sim \text{Uniform on } (0, \frac{1}{2}) \cup (1, \frac{3}{2})\)
 - \(Y \sim \text{Beta}(2,2)\)
 - \(Z \sim \text{Normal}(0,1)\).

- Support of \((X, Y, Z)\) when they are comonotonic:
5. Comonotonicity

5.2. An example (cont’d)

- Consider \((X, Y, Z)\) with
 \[X \sim \text{Uniform on } (0, \frac{1}{2}) \cup (1, \frac{3}{2}) \]
 \[Y \sim \text{Beta } (2,2) \]
 \[Z \sim \text{Normal } (0,1) . \]

- Support of \((X, Y, Z)\) when they are comonotonic:
5. Comonotonicity

5.3. Sums of comonotonic r.v.'s

- **Notation:**
 - \((X_1^c, \ldots, X_n^c) = \text{comonotonic counterpart of } (X_1, \ldots, X_n)\).
 - \(S^c = X_1^c + X_2^c + \cdots + X_n^c\).

- **Quantiles of** \(S^c\):
 \[
 F_{S^c}^{-1}(p) = \sum_{i=1}^{n} F_{X_i}^{-1}(p)
 \]

- **Distribution function of** \(S^c\):
 \[
 \sum_{i=1}^{n} F_{X_i}^{-1} [F_{S^c}(x)] = x
 \]
5. Comonotonicity

5.3. Sums of comonotonic r.v.'s

- **Notation:**
 - $(X_1^c, \ldots, X_n^c) = \text{comonotonic counterpart of } (X_1, \ldots, X_n)$.
 - $S^c = X_1^c + X_2^c + \cdots + X_n^c$.

- **Quantiles of S^c:**
 \[
 F_{S^c}^{-1}(p) = \sum_{i=1}^{n} F_{X_i}^{-1}(p)
 \]

- **Distribution function of S^c:**
 \[
 \sum_{i=1}^{n} F_{X_i}^{-1} [F_{S^c}(x)] = x
 \]
5. Comonotonicity

5.3. Sums of comonotonic r.v.'s

- **Notation:**
 - $(X_1^c, \ldots, X_n^c) =$ comonotonic counterpart of (X_1, \ldots, X_n).
 - $S^c = X_1^c + X_2^c + \cdots + X_n^c$.

- **Quantiles of S^c:**

 \[
 F_{S^c}^{-1}(p) = \sum_{i=1}^{n} F_{X_i}^{-1}(p)
 \]

- **Distribution function of S^c:**

 \[
 \sum_{i=1}^{n} F_{X_i}^{-1} [F_{S^c}(x)] = x
 \]
5. Comonotonicity

5.3. Sums of comonotonic r.v.'s

- **Notation:**
 - \((X_1^c, \ldots, X_n^c) = \text{comonotonic counterpart of } (X_1, \ldots, X_n)\).
 - \(S^c = X_1^c + X_2^c + \cdots + X_n^c\).

- **Quantiles of \(S^c\):**
 \[
 F_{S^c}^{-1}(p) = \sum_{i=1}^{n} F_{X_i}^{-1}(p)
 \]

- **Distribution function of \(S^c\):**
 \[
 \sum_{i=1}^{n} F_{X_i}^{-1} [F_{S^c}(x)] = x
 \]
5. Comonotonicity

5.3. Sums of comonotonic r.v.'s

- **Notation:**
 - \((X_1^c, \ldots, X_n^c) = \text{comonotonic counterpart of } (X_1, \ldots, X_n)\).
 - \(S^c = X_1^c + X_2^c + \cdots + X_n^c\).

- **Quantiles of \(S^c\):**
 \[
 F_{S^c}^{-1}(p) = \sum_{i=1}^{n} F_{X_i}^{-1}(p)
 \]

- **Distribution function of \(S^c\):**
 \[
 \sum_{i=1}^{n} F_{X_i}^{-1} [F_{S^c}(x)] = x
 \]
5. Comonotonicity

5.3. Sums of comonotonic r.v.’s (cont’d)

- **Stop-loss premiums of** S^c: (D., Wang, Young, Goovaerts, 2000)

\[
E [S^c - d]_+ = \sum_{i=1}^{n} E [(X_i - d_i)_+]
\]

with

\[
d_i = F_{X_i}^{-1} [F_{S^c} (d)]
\]

- **Jamshidian’s formula**: (Jamshidian, 1989)
 - Assume the Vasicek (1977) model.
 - Price of a European call on a coupon bond
 \[= \text{sum of prices of European calls on zero coupon bonds}\].
5. Comonotonicity

5.3. Sums of comonotonic r.v.’s (cont’d)

- **Stop-loss premiums of** S^c: (D., Wang, Young, Goovaerts, 2000)

\[
E [S^c - d]_+ = \sum_{i=1}^{n} E [(X_i - d_i)_+] \\
\text{with } \quad d_i = F_{X_i}^{-1} [F_{S^c}(d)]
\]

- **Jamshidian’s formula**: (Jamshidian, 1989)
 - Assume the Vasicek (1977) model.
 - Price of a European call on a coupon bond
 $= \text{sum of prices of European calls on zero coupon bonds.}$
5. Comonotonicity

5.3. Sums of comonotonic r.v.’s (cont’d)

- **Stop-loss premiums of** S^c: (D., Wang, Young, Goovaerts, 2000)

\[
E [S^c - d]_+ = \sum_{i=1}^{n} E [(X_i - d_i)_+]
\]

with

\[
d_i = F_{X_i}^{-1} [F_{S^c}(d)]
\]

- **Jamshidian’s formula**: (Jamshidian, 1989)
 - Assume the Vasicek (1977) model.
 - Price of a European call on a coupon bond
 = sum of prices of European calls on zero coupon bonds.
5. Comonotonicity

5.3. Sums of comonotonic r.v.’s (cont’d)

- **Stop-loss premiums of S^c:** (D., Wang, Young, Goovaerts, 2000)

\[
E [S^c - d]_+ = \sum_{i=1}^{n} E [(X_i - d_i)_+]
\]

with

\[
d_i = F_{X_i}^{-1} [F_{S^c}(d)]
\]

- **Jamshidian’s formula:** (Jamshidian, 1989)
 - Assume the Vasicek (1977) model.
 - Price of a European call on a coupon bond
 - sum of prices of European calls on zero coupon bonds.
6. An allocation problem

(D., Goovaerts, Kaas, 2003; D., Tsanakas, Valdez, Vanduffel, 2009)

Problem description:

- Consider the loss portfolio \((X_1, \ldots, X_n)\).
- \(X_i = \) loss of business unit \(i\).
- \(d = \) aggregate solvency capital.
- How to measure the performance of the business units?
 - Allocate \(d\) among the \(n\) business units.
 - Determine the returns on the allocated capitals.

 Allocation rule:

\[
\min \sum_{i=1}^{n} d_i = d \quad \text{subject to} \quad \sum_{i=1}^{n} (X_i - d_i)_+ \leq d
\]
6. An allocation problem
(D., Goovaerts, Kaas, 2003; D., Tsanakas, Valdez, Vanduffel, 2009)

► **Problem description:**
 ► Consider the loss portfolio \((X_1, \ldots, X_n)\).
 ► \(X_i\) = loss of business unit \(i\).
 ► \(d\) = aggregate solvency capital.
 ► How to measure the performance of the business units?
 ► Allocate \(d\) among the \(n\) business units.
 ► Determine the returns on the allocated capitals.

► **Allocation rule:**

\[
\min_{\sum_{i=1}^{n} d_i = d} \mathbb{E} \left(\sum_{i=1}^{n} \left[(X_i - d_i)_+ \right] \right)
\]
6. An allocation problem

(D., Goovaerts, Kaas, 2003; D., Tsanakas, Valdez, Vanduffel, 2009)

- Problem description:
 - Consider the loss portfolio \((X_1, \ldots, X_n)\).
 - \(X_i = \) loss of business unit \(i\).
 - \(d = \) aggregate solvency capital.
 - How to measure the performance of the business units?
 - Allocate \(d\) among the \(n\) business units.
 - Determine the returns on the allocated capitals.

- Allocation rule:

\[
\min_{\sum_{i=1}^{n} d_i = d} \mathbb{E} \left(\sum_{i=1}^{n} [(X_i - d_i)_+] \right)
\]
6. An allocation problem
(D., Goovaerts, Kaas, 2003; D., Tsanakas, Valdez, Vanduffel, 2009)

- **Problem description:**
 - Consider the loss portfolio \((X_1, \ldots, X_n)\).
 - \(X_i\) = loss of business unit \(i\).
 - \(d\) = aggregate solvency capital.
 - How to measure the performance of the business units?
 - Allocate \(d\) among the \(n\) business units.
 - Determine the returns on the allocated capitals.

- **Allocation rule:**
 \[
 \min_{\sum_{i=1}^{n} d_i = d} \mathbb{E} \left(\sum_{i=1}^{n} \left[(X_i - d_i)_+ \right] \right)
 \]
6. An allocation problem

(D., Goovaerts, Kaas, 2003; D., Tsanakas, Valdez, Vanduffel, 2009)

- **Problem description:**
 - Consider the loss portfolio \((X_1, \ldots, X_n)\).
 - \(X_i = \text{loss of business unit } i\).
 - \(d = \text{aggregate solvency capital}\).
 - How to measure the performance of the business units?
 - Allocate \(d\) among the \(n\) business units.
 - Determine the returns on the allocated capitals.

- **Allocation rule:**

\[
\min_{\sum_{i=1}^{n} d_i = d} \mathbb{E} \left(\sum_{i=1}^{n} (X_i - d_i)_+ \right)
\]
6. An allocation problem

(Deech, Goovaerts, Kaas, 2003; Deech, Tsanakas, Valdez, Vanduffel, 2009)

- **Problem description:**
 - Consider the loss portfolio \((X_1, \ldots, X_n)\).
 - \(X_i\) = loss of business unit \(i\).
 - \(d\) = aggregate solvency capital.
 - How to measure the performance of the business units?
 - Allocate \(d\) among the \(n\) business units.
 - Determine the returns on the allocated capitals.

- **Allocation rule:**

\[
\min_{\sum_{i=1}^{n} d_i = d} \mathbb{E} \left(\sum_{i=1}^{n} \left[(X_i - d_i)_+ \right] \right)
\]
6. An allocation problem
(D., Goovaerts, Kaas, 2003; D., Tsanakas, Valdez, Vanduffel, 2009)

- Problem description:
 - Consider the loss portfolio \((X_1, \ldots, X_n)\).
 - \(X_i\) = loss of business unit \(i\).
 - \(d\) = aggregate solvency capital.
 - How to measure the performance of the business units?
 - Allocate \(d\) among the \(n\) business units.
 - Determine the returns on the allocated capitals.

- Allocation rule:
 \[
 \min_{\sum_{i=1}^{n} d_i = d} \mathbb{E} \left(\sum_{i=1}^{n} [(X_i - d_i)_+] \right)
 \]
6. An allocation problem
(D., Goovaerts, Kaas, 2003; D., Tsanakas, Valdez, Vanduffel, 2009)

Problem description:
- Consider the loss portfolio \((X_1, \ldots, X_n)\).
- \(X_i\) = loss of business unit \(i\).
- \(d\) = aggregate solvency capital.
- How to measure the performance of the business units?
 - Allocate \(d\) among the \(n\) business units.
 - Determine the returns on the allocated capitals.

Allocation rule:

\[
\min_{\sum_{i=1}^{n} d_i = d} \mathbb{E} \left(\sum_{i=1}^{n} \left[(X_i - d_i)^+ \right] \right)
\]
6. An allocation problem (cont’d)

Solution of the minimization problem:

- Let \(S = X_1 + \cdots + X_n \) and \(S^c = X_1^c + \cdots + X_n^c \).
- For all \(d_i \) with \(\sum_{i=1}^n d_i = d \), we have

\[
E \left[(S^c - d)_+ \right] \leq \sum_{i=1}^n E \left[(X_i - d_i)_+ \right]
\]

- Notice that

\[
E \left[(S^c - d)_+ \right] = \sum_{i=1}^n E \left[\left(X_i - F_{X_i}^{-1} \left[F_{S^c}(d) \right] \right)_+ \right]
\]

- Also notice that

\[
\sum_{i=1}^n F_{X_i}^{-1} [F_{S^c}(d)] = d
\]

- Conclusion: the optimal allocation is given by

\[
d_i^* = F_{X_i}^{-1} [F_{S^c}(d)]
\]
6. An allocation problem (cont’d)

Solution of the minimization problem:

- Let $S = X_1 + \cdots + X_n$ and $S^c = X_1^c + \cdots + X_n^c$.
- For all d_i with $\sum_{i=1}^{n} d_i = d$, we have

$$E[(S^c - d)_+] \leq \sum_{i=1}^{n} E[(X_i - d_i)_+]$$

- Notice that

$$E[(S^c - d)_+] = \sum_{i=1}^{n} E\left[(X_i - F_{X_i}^{-1}[F_{S^c}(d)])_+\right]$$

- Also notice that

$$\sum_{i=1}^{n} F_{X_i}^{-1}[F_{S^c}(d)] = d$$

- Conclusion: the optimal allocation is given by

$$d_i^* = F_{X_i}^{-1}[F_{S^c}(d)]$$
6. An allocation problem (cont’d)

- **Solution of the minimization problem:**
 - Let \(S = X_1 + \cdots + X_n \) and \(S^c = X_1^c + \cdots + X_n^c \).
 - For all \(d_i \) with \(\sum_{i=1}^{n} d_i = d \), we have

\[
E \left[(S^c - d)_+ \right] \leq \sum_{i=1}^{n} E \left[(X_i - d_i)_+ \right]
\]

- Notice that

\[
E \left[(S^c - d)_+ \right] = \sum_{i=1}^{n} E \left[\left(X_i - F_{X_i}^{-1} \left[F_{S^c}(d) \right] \right)_+ \right]
\]

- Also notice that

\[
\sum_{i=1}^{n} F_{X_i}^{-1} \left[F_{S^c}(d) \right] = d
\]

- **Conclusion:** the optimal allocation is given by

\[
d_i^* = F_{X_i}^{-1} \left[F_{S^c}(d) \right]
\]
6. An allocation problem (cont’d)

- Solution of the minimization problem:
 - Let \(S = X_1 + \cdots + X_n \) and \(S^c = X_1^c + \cdots + X_n^c \).
 - For all \(d_i \) with \(\sum_{i=1}^{n} d_i = d \), we have
 \[
 \mathbb{E}[(S^c - d)_+] \leq \sum_{i=1}^{n} \mathbb{E}[(X_i - d_i)_+]
 \]

- Notice that
 \[
 \mathbb{E}[(S^c - d)_+] = \sum_{i=1}^{n} \mathbb{E}\left[\left(X_i - F_{X_i}^{-1}[F_{S^c}(d)]\right)_+\right]
 \]

- Also notice that
 \[
 \sum_{i=1}^{n} F_{X_i}^{-1}[F_{S^c}(d)] = d
 \]

- Conclusion: the optimal allocation is given by
 \[
 d_i^* = F_{X_i}^{-1}[F_{S^c}(d)]
 \]
6. An allocation problem (cont’d)

Solution of the minimization problem:

- Let $S = X_1 + \cdots + X_n$ and $S^c = X_1^c + \cdots + X_n^c$.
- For all d_i with $\sum_{i=1}^{n} d_i = d$, we have

\[
E[(S^c - d)_+] \leq \sum_{i=1}^{n} E[(X_i - d_i)_+]
\]

Notice that

\[
E[(S^c - d)_+] = \sum_{i=1}^{n} E \left[\left(X_i - F_{X_i}^{-1}[F_{S^c}(d)] \right)_+ \right]
\]

Also notice that

\[
\sum_{i=1}^{n} F_{X_i}^{-1}[F_{S^c}(d)] = d
\]

Conclusion: the optimal allocation is given by

\[
d_i^* = F_{X_i}^{-1}[F_{S^c}(d)]
\]
6. An allocation problem (cont’d)

Solution of the minimization problem:

- Let \(S = X_1 + \cdots + X_n \) and \(S^c = X_1^c + \cdots + X_n^c \).
- For all \(d_i \) with \(\sum_{i=1}^{n} d_i = d \), we have

\[
E[(S^c - d)_+] \leq \sum_{i=1}^{n} E[(X_i - d_i)_+]
\]

- Notice that

\[
E[(S^c - d)_+] = \sum_{i=1}^{n} E\left[(X_i - F_{X_i}^{-1}[F_{S^c}(d)])_+\right]
\]

- Also notice that

\[
\sum_{i=1}^{n} F_{X_i}^{-1}[F_{S^c}(d)] = d
\]

- **Conclusion:** the optimal allocation is given by

\[
d^*_i = F_{X_i}^{-1}[F_{S^c}(d)]
\]
7. Convex order

7.1 Upper and lower tails of d.f.'s

\[E[(X - d)_+] = \text{surface above the d.f., from } d \text{ on:} \]
7. Convex order

7.1 Upper and lower tails of d.f.'s (cont'd)

- \(E[(d - X)_+] \) = surface below the d.f., from \(-\infty\) to \(d\).
7. convex order

7.2. Defining convex order

- **Definition:**

\[X \leq_{cx} Y \iff \text{any tail of } Y \text{ exceeds the corresponding tail of } X \]

- Risk averse decision makers prefer loss \(X \) over loss \(Y \).

- **Characterization in terms of distortion risk measures:**
 (Wang & Young, 1998; Denuit et al., 2005)

\[X \leq_{cx} Y \iff \mathbb{E}[X] = \mathbb{E}[Y] \text{ and } \rho_g [X] \leq \rho_g [Y] \text{ for all concave } g. \]
7. convex order

7.2. Defining convex order

Definition:

\[X \leq_{cx} Y \iff \text{any tail of } Y \text{ exceeds the corresponding tail of } X \]

Risk averse decision makers prefer loss \(X \) over loss \(Y \).

Characterization in terms of distortion risk measures:

(Wang & Young, 1998; Denuit et al., 2005)

\[X \leq_{cx} Y \iff \mathbb{E}[X] = \mathbb{E}[Y] \text{ and } \rho_g [X] \leq \rho_g [Y] \text{ for all concave } g. \]
7. convex order

7.2. Defining convex order

- **Definition:**

 \[X \preceq_{cx} Y \iff \text{any tail of } Y \text{ exceeds the corresponding tail of } X \]

- **Risk averse decision makers prefer loss } X \text{ over loss } Y.**

- **Characterization in terms of distortion risk measures:**

 (Wang & Young, 1998; Denuit et al., 2005)

 \[X \preceq_{cx} Y \iff \mathbb{E}[X] = \mathbb{E}[Y] \text{ and } \rho_g [X] \leq \rho_g [Y] \text{ for all concave } g. \]
7. Convex order

7.3. Convex bounds for sums of r.v.'s

orem: (Kaas et al., 2000)
For any \((X_1, \cdots, X_n)\) and any \(\Lambda\), we have that

\[
\sum_{i=1}^{n} E[X_i \mid \Lambda] \leq_{cx} \sum_{i=1}^{n} X_i \leq_{cx} \sum_{i=1}^{n} X_i^c
\]

Notation: \(S^l \leq_{cx} S \leq_{cx} S^c\).

When all \(E[X_i \mid \Lambda]\) are \(\uparrow\) functions of \(\Lambda\):

- \(S^l\) is a comonotonic sum.

Why use these comonotonic bounds?

- One-dimensional stochasticity.
- \(\rho_g[S^l]\) and \(\rho_g[S^c]\) are easy to calculate.
- If \(g\) is concave, then \(\rho_g[S^l] \leq \rho_g[S] \leq \rho_g[S^c]\).
7. Convex order

7.3. Convex bounds for sums of r.v.'s

- **Theorem**: (Kaas et al., 2000)
 For any \((X_1, \ldots, X_n)\) and any \(\Lambda\), we have that

\[
\sum_{i=1}^{n} \mathbb{E}[X_i \mid \Lambda] \leq_{cx} \sum_{i=1}^{n} X_i \leq_{cx} \sum_{i=1}^{n} X_i^c
\]

- **Notation**: \(S^I \leq_{cx} S \leq_{cx} S^c\).

- When all \(\mathbb{E}[X_i \mid \Lambda]\) are \(\uparrow\) functions of \(\Lambda\):
 - \(S^I\) is a comonotonic sum.

- **Why use these comonotonic bounds?**
 - One-dimensional stochasticity.
 - \(\rho_g[S^I]\) and \(\rho_g[S^c]\) are easy to calculate.
 - If \(g\) is concave, then \(\rho_g[S^I] \leq \rho_g[S] \leq \rho_g[S^c]\).
7. Convex order

7.3. Convex bounds for sums of r.v.'s

- **Theorem**: (Kaas et al., 2000)
 For any \((X_1, \ldots, X_n)\) and any \(\Lambda\), we have that

 \[
 \sum_{i=1}^{n} \mathbb{E}[X_i \mid \Lambda] \leq_{cx} \sum_{i=1}^{n} X_i \leq_{cx} \sum_{i=1}^{n} X_i^c
 \]

- **Notation**: \(S^l \leq_{cx} S \leq_{cx} S^c\).

- **When all \(\mathbb{E}[X_i \mid \Lambda]\) are \(\nearrow\) functions of \(\Lambda\):**
 - \(S^l\) is a comonotonic sum.

- **Why use these comonotonic bounds?**
 - One-dimensional stochasticity.
 - \(\rho_g[S^l]\) and \(\rho_g[S^c]\) are easy to calculate.
 - If \(g\) is concave, then \(\rho_g[S^l] \leq \rho_g[S] \leq \rho_g[S^c]\)
7. Convex order

7.3. Convex bounds for sums of r.v.'s

- **Theorem**: (Kaas et al., 2000)
 For any \((X_1, \ldots, X_n)\) and any \(\Lambda\), we have that

\[
\sum_{i=1}^{n} E[X_i \mid \Lambda] \leq_{cx} \sum_{i=1}^{n} X_i \leq_{cx} \sum_{i=1}^{n} X_i^c
\]

- **Notation**: \(S^l \leq_{cx} S \leq_{cx} S^c\).
- **Why use these comonotonic bounds?**
 - One-dimensional stochasticity.
 - \(\rho_g [S^l] \) and \(\rho_g [S^c] \) are easy to calculate.
 - If \(g\) is concave, then \(\rho_g [S^l] \leq \rho_g [S] \leq \rho_g [S^c]\).
7. Convex order

7.3. Convex bounds for sums of r.v.'s

- **Theorem**: (Kaas et al., 2000)

 For any \((X_1, \cdots, X_n)\) and any \(\Lambda\), we have that

 \[
 \sum_{i=1}^{n} E [X_i \mid \Lambda] \leq_{cx} \sum_{i=1}^{n} X_i \leq_{cx} \sum_{i=1}^{n} X_i^c
 \]

- **Notation**: \(S^l \leq_{cx} S \leq_{cx} S^c\).
- **When all** \(E [X_i \mid \Lambda]\) **are \(\uparrow\) functions of** \(\Lambda\):
 - \(S^l\) **is a comonotonic sum.**

- **Why use these comonotonic bounds?**
 - One-dimensional stochasticity.
 - \(\rho_g [S^l]\) and \(\rho_g [S^c]\) are easy to calculate.
 - If \(g\) is concave, then \(\rho_g [S^l] \leq \rho_g [S] \leq \rho_g [S^c]\).
7. Convex order

7.3. Convex bounds for sums of r.v.'s

- **Theorem**: (Kaas et al., 2000)
 For any \((X_1, \cdots, X_n)\) and any \(\Lambda\), we have that

 \[
 \sum_{i=1}^{n} \mathbb{E} [X_i \mid \Lambda] \leq_{cx} \sum_{i=1}^{n} X_i \leq_{cx} \sum_{i=1}^{n} X_i^c
 \]

- **Notation**: \(S^l \leq_{cx} S \leq_{cx} S^c\).
- **Why use these comonotonic bounds?**
 - **One-dimensional stochasticity.**
 - \(\rho_g [S^l]\) and \(\rho_g [S^c]\) are easy to calculate.
 - If \(g\) is concave, then \(\rho_g \left[S^l \right] \leq \rho_g \left[S \right] \leq \rho_g \left[S^c \right]\).
7. Convex order

7.3. Convex bounds for sums of r.v.'s

- **Theorem**: (Kaas et al., 2000)
 For any \((X_1, \cdots, X_n)\) and any \(\Lambda\), we have that

 \[
 \sum_{i=1}^{n} E \left[X_i \mid \Lambda \right] \leq_{cx} \sum_{i=1}^{n} X_i \leq_{cx} \sum_{i=1}^{n} X_i^c
 \]

- **Notation**: \(S^l \leq_{cx} S \leq_{cx} S^c\).
- **Why use these comonotonic bounds?**
 - One-dimensional stochasticity.
 - \(\rho_g \left[S^l \right] \) and \(\rho_g \left[S^c \right] \) are easy to calculate.
 - If \(g\) is concave, then \(\rho_g \left[S^l \right] \leq \rho_g \left[S \right] \leq \rho_g \left[S^c \right] \).
7. Convex order

7.3. Convex bounds for sums of r.v.'s

- **Theorem**: (Kaas et al., 2000)

 For any \((X_1, \cdots, X_n)\) and any \(\Lambda\), we have that

 \[
 \sum_{i=1}^{n} E \left[X_i \mid \Lambda \right] \leq_{cx} \sum_{i=1}^{n} X_i \leq_{cx} \sum_{i=1}^{n} X_i^c
 \]

- **Notation**: \(S^l \leq_{cx} S \leq_{cx} S^c\).

- When all \(E \left[X_i \mid \Lambda \right]\) are \(\nearrow\) functions of \(\Lambda\):
 - \(S^l\) is a comonotonic sum.

- **Why use these comonotonic bounds?**
 - One-dimensional stochasticity.
 - \(\rho_g \left[S^l \right]\) and \(\rho_g \left[S^c \right]\) are easy to calculate.
 - If \(g\) is concave, then \(\rho_g \left[S^l \right] \leq \rho_g \left[S \right] \leq \rho_g \left[S^c \right]\).
7. Convex order

7.4 On the choice of the conditioning r.v.

(Kaas et al., 2000; Vanduffel et al., 2005, 2009)

- Consider the multivariate normal random vector \((Y_1, \cdots, Y_n)\).
- The random sum \(S\) and its approximation \(S^l\):

\[
S = \sum_{i=1}^{n} e^{Y_i} \quad \text{and} \quad S^l = \sum_{i=1}^{n} E \left[e^{Y_i} \mid \Lambda \right]
\]

- First order approximation for \(\text{Var}[S^l]\):

\[
\text{Var}[S^l] \approx \left(\text{Corr} \left[\sum_{i=1}^{n} E[e^{-Y_i}] Y_i, \Lambda \right] \right)^2 \text{Var} \left[\sum_{i=1}^{n} E[e^{-Y_i}] Y_i \right]
\]

- Optimal choice for \(\Lambda\):

\[
\Lambda = \sum_{i=1}^{n} E \left[e^{Y_i} \right] Y_i
\]
7. Convex order

7.4 On the choice of the conditioning r.v.

(Kaas et al., 2000; Vanduffel et al., 2005, 2009)

- Consider the multivariate normal random vector \((Y_1, \cdots, Y_n)\).
- The random sum \(S\) and its approximation \(S'\):

\[
S = \sum_{i=1}^{n} e^{Y_i} \quad \text{and} \quad S' = \sum_{i=1}^{n} \mathbb{E}\left[e^{Y_i} \mid \Lambda \right]
\]

- First order approximation for \(\text{Var}[S']\):

\[
\text{Var}[S'] \approx \left(\text{Corr} \left(\sum_{i=1}^{n} \mathbb{E}[e^{-Y(i)}] Y_i, \Lambda \right) \right)^2 \text{Var} \left[\sum_{i=1}^{n} \mathbb{E}[e^{-Y(i)}] Y_i \right]
\]

- Optimal choice for \(\Lambda\):

\[
\Lambda = \sum_{i=1}^{n} \mathbb{E}\left[e^{Y_i} \right] Y_i
\]
7. Convex order

7.4 On the choice of the conditioning r.v.

(Kaas et al., 2000; Vanduffel et al., 2005, 2009)

- Consider the multivariate normal random vector \((Y_1, \ldots, Y_n)\).
- The random sum \(S\) and its approximation \(S'\):

 \[
 S = \sum_{i=1}^{n} e^{Y_i} \quad \text{and} \quad S' = \sum_{i=1}^{n} \mathbb{E} \left[e^{Y_i} \mid \Lambda \right]
 \]

- First order approximation for \(\text{Var}[S']\):

 \[
 \text{Var}[S'] \approx \left(\text{Corr} \left[\sum_{i=1}^{n} \mathbb{E}[e^{-Y(i)}] Y_i, \Lambda \right] \right)^2 \text{Var} \left[\sum_{i=1}^{n} \mathbb{E}[e^{-Y(i)}] Y_i \right]
 \]

- Optimal choice for \(\Lambda\):

 \[
 \Lambda = \sum_{i=1}^{n} \mathbb{E} \left[e^{Y_i} \right] Y_i
 \]
7. Convex order

7.4 On the choice of the conditioning r.v.

(Kaas et al., 2000; Vanduffel et al., 2005, 2009)

- Consider the multivariate normal random vector \((Y_1, \ldots, Y_n)\).
- The random sum \(S\) and its approximation \(S^l\):

\[
S = \sum_{i=1}^{n} e^{Y_i} \quad \text{and} \quad S^l = \sum_{i=1}^{n} E \left[e^{Y_i} \mid \Lambda \right]
\]

- First order approximation for \(\text{Var}[S^l]\):

\[
\text{Var}[S^l] \approx \left(\text{Corr} \left[\sum_{i=1}^{n} E[e^{-Y(i)}] Y_i, \Lambda \right] \right)^2 \text{Var} \left[\sum_{i=1}^{n} E[e^{-Y(i)}] Y_i \right]
\]

- Optimal choice for \(\Lambda\):

\[
\Lambda = \sum_{i=1}^{n} E \left[e^{Y_i} \right] Y_i
\]
8. Exotic options
(Simon, Goovaerts & D. 2000; Chen, Deelstra, D. & Vanmaele, 2008)

- **A European style basket call option:**
 - Consider a basket of \(n \) stocks (dividend-paying or not).
 - \(A_i(t) = \) price of stock \(i \) at time \(t \geq 0 \).
 - \(T = \) exercise date of the option.
 - \(K = \) exercise price.
 - Pay-off of the call option:
 \[
 \text{Pay-off at } T = \left(\sum_{i=1}^{n} w_i A_i(T) - K \right) +
 \]

- **Assumptions:**
 - Risk free interest rate = \(\delta \).
 - No arbitrage.
 - Arbitrage-free time 0 price of the basket option:
 \[
 BC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\sum_{i=1}^{n} w_i A_i(T) - K \right) + \right]
 \]
 - Expectations and probabilities are evaluated wrt \(Q \).
8. Exotic options

(Simon, Goovaerts & D. 2000; Chen, Deelstra, D. & Vanmaele, 2008)

- **A European style basket call option:**
 - Consider a basket of \(n \) stocks (dividend-paying or not).
 - \(A_i(t) \) = price of stock \(i \) at time \(t \geq 0 \).
 - \(T \) = exercise date of the option.
 - \(K \) = exercise price.
 - Pay-off of the call option:

\[
\text{Pay-off at } T = \left(\sum_{i=1}^{n} w_i A_i(T) - K \right)^+.
\]

- **Assumptions:**
 - Risk free interest rate = \(\delta \).
 - No arbitrage.
 - Arbitrage-free time 0 price of the basket option:

\[
BC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\sum_{i=1}^{n} w_i A_i(T) - K \right)^+ \right].
\]

- Expectations and probabilities are evaluated wrt \(Q \).
8. Exotic options
(Simon, Goovaerts & D. 2000; Chen, Deelstra, D. & Vanmaele, 2008)

- A European style basket call option:
 - Consider a basket of \(n \) stocks (dividend-paying or not).
 - \(A_i(t) \) = price of stock \(i \) at time \(t \geq 0 \).
 - \(T \) = exercise date of the option.
 - \(K \) = exercise price.
 - Pay-off of the call option:

\[
\text{Pay-off at } T = \left(\sum_{i=1}^{n} w_i A_i(T) - K \right) +
\]

- Assumptions:
 - Risk free interest rate = \(\delta \).
 - No arbitrage.
 - Arbitrage-free time 0 price of the basket option:

\[
BC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\sum_{i=1}^{n} w_i A_i(T) - K \right) + \right]
\]

- Expectations and probabilities are evaluated wrt \(Q \).
8. Exotic options
(Simon, Goovaerts & D. 2000; Chen, Deelstra, D. & Vanmaele, 2008)

- **A European style basket call option:**
 - Consider a basket of n stocks (dividend-paying or not).
 - $A_i(t) =$ price of stock i at time $t \geq 0$.
 - $T =$ exercise date of the option.
 - $K =$ exercise price.
 - Pay-off of the call option:
 \[
 \text{Pay-off at } T = \left(\sum_{i=1}^{n} w_i A_i(T) - K \right)_+
 \]

- **Assumptions:**
 - Risk free interest rate $= \delta$.
 - No arbitrage.
 - Arbitrage-free time 0 price of the basket option:
 \[
 BC[K, T] = e^{-\delta T} E \left[\left(\sum_{i=1}^{n} w_i A_i(T) - K \right)_+ \right]
 \]
 - Expectations and probabilities are evaluated wrt Q.

8. Exotic options
(Simon, Goovaerts & D. 2000; Chen, Deelstra, D. & Vanmaele, 2008)

- A European style basket call option:
 - Consider a basket of \(n \) stocks (dividend-paying or not).
 - \(A_i(t) \) = price of stock \(i \) at time \(t \geq 0 \).
 - \(T \) = exercise date of the option.
 - \(K \) = exercise price.
 - Pay-off of the call option:
 \[
 \text{Pay-off at } T = \left(\sum_{i=1}^{n} w_i A_i(T) - K \right)^+.
 \]

- Assumptions:
 - Risk free interest rate = \(\delta \).
 - No arbitrage.
 - Arbitrage-free time 0 price of the basket option:
 \[
 BC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\sum_{i=1}^{n} w_i A_i(T) - K \right)^+ \right].
 \]
 - Expectations and probabilities are evaluated wrt \(\mathbb{Q} \).
8. Exotic options

(Simon, Goovaerts & D. 2000; Chen, Deelstra, D. & Vanmaele, 2008)

- **A European style basket call option:**
 - Consider a basket of n stocks (dividend-paying or not).
 - $A_i(t) =$ price of stock i at time $t \geq 0$.
 - $T =$ exercise date of the option.
 - $K =$ exercise price.
 - **Pay-off of the call option:**

 \[
 \text{Pay-off at } T = \left(\sum_{i=1}^{n} w_i A_i(T) - K \right) +
 \]

- **Assumptions:**
 - Risk free interest rate = δ.
 - No arbitrage.
 - Arbitrage-free time 0 price of the basket option:

 \[
 BC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\sum_{i=1}^{n} w_i A_i(T) - K \right) + \right]
 \]

 - Expectations and probabilities are evaluated wrt \mathbb{Q}.
8. Exotic options

(Simon, Goovaerts & D. 2000; Chen, Deelstra, D. & Vanmaele, 2008)

- **A European style basket call option:**
 - Consider a basket of n stocks (dividend-paying or not).
 - $A_i(t) =$ price of stock i at time $t \geq 0$.
 - $T =$ exercise date of the option.
 - $K =$ exercise price.
 - Pay-off of the call option:

\[
\text{Pay-off at } T = \left(\sum_{i=1}^{n} w_i A_i(T) - K \right) +
\]

- **Assumptions:**
 - Risk free interest rate = δ.
 - No arbitrage.
 - Arbitrage-free time 0 price of the basket option:

\[
BC[K, T] = e^{-\delta T} E \left[\left(\sum_{i=1}^{n} w_i A_i(T) - K \right) + \right]
\]

- Expectations and probabilities are evaluated wrt Q.
8. Exotic options

(Simon, Goovaerts & D. 2000; Chen, Deelstra, D. & Vanmaele, 2008)

- A European style basket call option:
 - Consider a basket of \(n \) stocks (dividend-paying or not).
 - \(A_i(t) = \) price of stock \(i \) at time \(t \geq 0 \).
 - \(T = \) exercise date of the option.
 - \(K = \) exercise price.
 - Pay-off of the call option:

\[
\text{Pay-off at } T = \left(\sum_{i=1}^{n} w_i A_i(T) - K \right)^+ \]

- Assumptions:
 - Risk free interest rate = \(\delta \).
 - No arbitrage.
 - Arbitrage-free time 0 price of the basket option:

\[
BC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\sum_{i=1}^{n} w_i A_i(T) - K \right)^+ \right] \]

- Expectations and probabilities are evaluated wrt \(Q \).
A European style basket call option:

Consider a basket of n stocks (dividend-paying or not).

- $A_i(t) =$ price of stock i at time $t \geq 0$.
- $T =$ exercise date of the option.
- $K =$ exercise price.

Pay-off of the call option:

\[
\text{Pay-off at } T = \left(\sum_{i=1}^{n} w_i A_i(T) - K \right)^+
\]

Assumptions:

- Risk free interest rate $= \delta$.
- No arbitrage.

Arbitrage-free time 0 price of the basket option:

\[
BC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\sum_{i=1}^{n} w_i A_i(T) - K \right)^+ \right]
\]

Expectations and probabilities are evaluated wrt Q.

(Simon, Goovaerts & D. 2000; Chen, Deelstra, D. & Vanmaele, 2008)
8. Exotic options

(Simon, Goovaerts & D. 2000; Chen, Deelstra, D. & Vanmaele, 2008)

- A European style basket call option:
 - Consider a basket of n stocks (dividend-paying or not).
 - $A_i(t)$ = price of stock i at time $t \geq 0$.
 - T = exercise date of the option.
 - K = exercise price.
 - Pay-off of the call option:

\[
\text{Pay-off at } T = \left(\sum_{i=1}^{n} w_i A_i(T) - K \right) +
\]

- Assumptions:
 - Risk free interest rate = δ.
 - No arbitrage.
 - Arbitrage-free time 0 price of the basket option:

\[
BC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\sum_{i=1}^{n} w_i A_i(T) - K \right) ^+ \right]
\]

- Expectations and probabilities are evaluated wrt Q.
8. Exotic options
(Simon, Goovaerts & D. 2000; Chen, Deelstra, D. & Vanmaele, 2008)

- **A European style basket call option:**
 - Consider a basket of \(n \) stocks (dividend-paying or not).
 - \(A_i(t) \) = price of stock \(i \) at time \(t \geq 0 \).
 - \(T \) = exercise date of the option.
 - \(K \) = exercise price.
 - Pay-off of the call option:

 \[
 \text{Pay-off at } T = \left(\sum_{i=1}^{n} w_i A_i(T) - K \right)_+ \]

- **Assumptions:**
 - Risk free interest rate = \(\delta \).
 - No arbitrage.
 - Arbitrage-free time 0 price of the basket option:

 \[
 BC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\sum_{i=1}^{n} w_i A_i(T) - K \right)_+ \right]
 \]

- Expectations and probabilities are evaluated wrt \(Q \).
8. Exotic options

8.2. A comonotonic upperbound

Define S and S^c by:

$$S = \sum_{i=1}^{n} w_i A_i(T) \text{ and } S^c = \sum_{i=1}^{n} w_i A^c_i(T)$$

An upper bound for the basket option price:

$$BC[K, T] = e^{-\delta T} E[(S - K)_+] \leq e^{-\delta T} E[(S^c - K)_+]$$

European call options on stock i:

$$EC_i[k, T] = e^{-\delta T} E[(A_i(T) - k)_+]$$

The upper bound in terms of European call option prices:

$$e^{-\delta T} E[(S^c - K)_+] = \sum_{i=1}^{n} w_i EC_i\left[F_{A_i(T)}^{-1}\left(F_{S^c(nK)}\right), T\right]$$
8. Exotic options
8.2. A comonotonic upperbound

Define S and S^c by:

$$S = \sum_{i=1}^{n} w_i A_i(T) \text{ and } S^c = \sum_{i=1}^{n} w_i A^c_i(T)$$

An upper bound for the basket option price:

$$BC[K, T] = e^{-\delta T} \mathbb{E} [(S - K)_+] \leq e^{-\delta T} \mathbb{E} [(S^c - K)_+]$$

European call options on stock i:

$$EC_i[k, T] = e^{-\delta T} \mathbb{E} [(A_i(T) - k)_+]$$

The upper bound in terms of European call option prices:

$$e^{-\delta T} \mathbb{E} [(S^c - K)_+] = \sum_{i=1}^{n} w_i EC_i \left[F_{A_i(T)}^{-1} (F_{S^c}(nK)), T \right]$$
8. Exotic options

8.2. A comonotonic upperbound

- Define S and S^c by:

$$S = \sum_{i=1}^{n} w_i \ A_i(T) \quad \text{and} \quad S^c = \sum_{i=1}^{n} w_i \ A^c_i(T)$$

- An upper bound for the basket option price:

$$BC[K, T] = e^{-\delta T} \ E \left[(S - K)_+\right] \leq e^{-\delta T} \ E \left[(S^c - K)_+\right]$$

- European call options on stock i:

$$EC_i[k, T] = e^{-\delta T} \ E \left[(A_i(T) - k)_+\right]$$

- The upper bound in terms of European call option prices:

$$e^{-\delta T} \ E \left[(S^c - K)_+\right] = \sum_{i=1}^{n} w_i \ EC_i \left[F^{-1}_{A_i(T)}(F_{S^c}(nK)), T\right]$$
8. Exotic options

8.2. A comonotonic upperbound

- Define S and S^c by:

$$
S = \sum_{i=1}^{n} w_i \ A_i(T) \text{ and } S^c = \sum_{i=1}^{n} w_i \ A^c_i(T)
$$

- An upper bound for the basket option price:

$$
BC[K, T] = e^{-\delta T} \ E[(S - K)_+] \leq e^{-\delta T} \ E[(S^c - K)_+]
$$

- European call options on stock i:

$$
EC_i[k, T] = e^{-\delta T} \ E[(A_i(T) - k)_+]
$$

- The upper bound in terms of European call option prices:

$$
e^{-\delta T} \ E[(S^c - K)_+] = \sum_{i=1}^{n} w_i \ EC_i \left[F_{A_i(T)}^{-1} \left(F_{S^c(nK)} \right), T \right]
$$
8. Exotic options
8.3. Buying combinations of European calls

- **The investment strategy** \((\nu_1, \nu_2, \ldots, \nu_n) \):
 - At time 0, we buy a combination of European calls \(\text{EC}_i [k, T] \) for different \(i \) and \(k \).
 - Pay-off at time \(T \):
 \[
 \sum_{i=1}^{n} \int_{0}^{\infty} (A_i(T) - k)_+ \ d\nu_i(k)
 \]
 - Any such investment strategy is static and characterized by
 \[
 \nu = (\nu_1, \nu_2, \ldots, \nu_n)
 \]

- **Price at time 0 of investment strategy** \(\nu \):
 \[
 \text{Price} [\nu] = \sum_{i=1}^{n} \int_{0}^{\infty} \text{EC}_i [k, T] \ d\nu_i(k)
 \]
8. Exotic options

8.3. Buying combinations of European calls

- The investment strategy \((\nu_1, \nu_2, \ldots, \nu_n)\):
 - At time 0, we buy a combination of European calls \(EC_i[k, T]\) for different \(i\) and \(k\).
 - Pay-off at time \(T\):
 \[
 \sum_{i=1}^{n} \int_{0}^{\infty} (A_i(T) - k)_+ \, d\nu_i(k)
 \]
 - Any such investment strategy is static and characterized by
 \[\nu = (\nu_1, \nu_2, \ldots, \nu_n)\]

- Price at time 0 of investment strategy \(\nu\):
 \[
 \text{Price}[\nu] = \sum_{i=1}^{n} \int_{0}^{\infty} EC_i[k, T] \, d\nu_i(k)
 \]
8. Exotic options

8.3. Buying combinations of European calls

- **The investment strategy** \((\nu_1, \nu_2, \ldots, \nu_n)\):
 - At time 0, we buy a combination of European calls \(EC_i[k, T]\) for different \(i\) and \(k\).
 - **Pay-off at time** \(T\):
 \[
 \sum_{i=1}^{n} \int_{0}^{\infty} (A_i(T) - k)_+\, d\nu_i(k)
 \]
 - Any such investment strategy is static and characterized by
 \[
 \nu = (\nu_1, \nu_2, \ldots, \nu_n)
 \]

- **Price at time 0 of investment strategy** \(\nu\):
 \[
 \text{Price}[\nu] = \sum_{i=1}^{n} \int_{0}^{\infty} EC_i[k, T]\, d\nu_i(k)
 \]
8. Exotic options
8.3. Buying combinations of European calls

- **The investment strategy** \((\nu_1, \nu_2, \ldots, \nu_n)\):
 - At time 0, we buy a combination of European calls \(EC_i[k, T]\) for different \(i\) and \(k\).
 - Pay-off at time \(T\):
 \[
 \sum_{i=1}^{n} \int_{0}^{\infty} (A_i(T) - k)_+ \, d\nu_i(k)
 \]
 - Any such investment strategy is static and characterized by \(\nu = (\nu_1, \nu_2, \ldots, \nu_n)\)

- **Price at time 0 of investment strategy** \(\nu\):
 \[
 \text{Price}[\nu] = \sum_{i=1}^{n} \int_{0}^{\infty} EC_i[k, T] \, d\nu_i(k)
 \]
8. Exotic options
8.3. Buying combinations of European calls

- The investment strategy \((\nu_1, \nu_2, \ldots, \nu_n)\):
 - At time 0, we buy a combination of European calls \(EC_i[k, T]\) for different \(i\) and \(k\).
 - Pay-off at time \(T\):
 \[
 \sum_{i=1}^{n} \int_{0}^{\infty} (A_i(T) - k)_+ \, d\nu_i(k)
 \]
 - Any such investment strategy is static and characterized by
 \[
 \nu = (\nu_1, \nu_2, \ldots, \nu_n)
 \]

- Price at time 0 of investment strategy \(\nu\):
 \[
 \text{Price} [\nu] = \sum_{i=1}^{n} \int_{0}^{\infty} EC_i[k, T] \, d\nu_i(k)
 \]
8. Exotic options

8.3. Buying combinations of European calls (cont’d)

▶ **Super-replicating strategies:**

▶ Consider the strategies \(\nu \) such that for all \(x \geq 0 \) it holds that:

\[
\sum_{i=1}^{n} \int_{0}^{+\infty} (x_i - k)_+ \, d\nu_i(k) \geq \left(\sum_{i=1}^{n} w_i \, x_i - K \right)_+
\]

▶ Denote the set of such strategies by \(\mathcal{A}_K \).

▶ The price of \(\nu \in \mathcal{A}_K \) exceeds the price of the basket option:

\[
\text{Price}[\nu] \geq \text{BC}(K, T)
\]
8. Exotic options
8.3. Buying combinations of European calls (cont’d)

Super-replicating strategies:

Consider the strategies ν such that for all $x \geq 0$ it holds that:

$$
\sum_{i=1}^{n} \int_{0}^{+\infty} (x_i - k)_+ \, d\nu_i(k) \geq \left(\sum_{i=1}^{n} w_i \, x_i - K \right)_+
$$

Denote the set of such strategies by \mathcal{A}_K.

The price of $\nu \in \mathcal{A}_K$ exceeds the price of the basket option:

$$\text{Price } [\nu] \geq \text{BC}(K, T)$$
8. Exotic options

8.3. Buying combinations of European calls (cont’d)

- **Super-replicating strategies:**

 - Consider the strategies ν such that for all $x \geq 0$ it holds that:
 \[
 \sum_{i=1}^{n} \int_{0}^{+\infty} (x_i - k)_{+} \, d\nu_i(k) \geq \left(\sum_{i=1}^{n} w_i \, x_i - K \right)_{+}
 \]

 - Denote the set of such strategies by \mathcal{A}_K.

- The price of $\nu \in \mathcal{A}_K$ exceeds the price of the basket option:
 \[
 \text{Price} [\nu] \geq BC(K, T)
 \]
8. Exotic options
8.3. Buying combinations of European calls (cont’d)

- Super-replicating strategies:
 - Consider the strategies \(\nu \) such that for all \(x \geq 0 \) it holds that:
 \[
 \sum_{i=1}^{n} \int_{0}^{+\infty} (x_i - k)_+ \, d\nu_i(k) \geq \left(\sum_{i=1}^{n} w_i \, x_i - K \right)_+
 \]
 - Denote the set of such strategies by \(A_K \).

- The price of \(\nu \in A_K \) exceeds the price of the basket option:
 \[
 \text{Price}[\nu] \geq BC(K, T)
 \]
8. Exotic options

8.4. The cheapest super-replicating strategy

- **Upperbounds for the basket option:**
 - The comonotonic upperbound:
 \[
 BC(K, T) \leq e^{-\delta T} E \left[(S^c - K)_+\right]
 \]
 - The price of any \(\nu \in \mathcal{A}_K \) is an upperbound for \(BC(K, T) \).

- **Theorem**
 - The comonotonic UB is the price of the cheapest super-replicating strategy in \(\mathcal{A}_K \):
 \[
 e^{-\delta T} E \left[(S^c - K)_+\right] = \min_{\nu \in \mathcal{A}_K} \sum_{i=1}^{n} \int_{0}^{+\infty} EC_i [k, T] \, d\nu_i(k)
 \]
 - The \(\nu \) corresponding with the comonotonic UB:
 - For each \(i \), buy \(w_i \) European calls \(EC_i \{ F_{K^i} T \} (F_{Sc}(nK), T) \).
8. Exotic options

8.4. The cheapest super-replicating strategy

- **Upperbounds for the basket option:**

 - The comonotonic upperbound:

 \[
 BC(K, T) \leq e^{-\delta T} E\left[(S^c - K)_+\right]
 \]

 - The price of any \(\nu \in \mathcal{A}_K \) is an upperbound for \(BC(K, T) \).

- **Theorem**

 - The comonotonic UB is the price of the cheapest super-replicating strategy in \(\mathcal{A}_K \):

 \[
 e^{-\delta T} E\left[(S^c - K)_+\right] = \min_{\nu \in \mathcal{A}_K} \sum_{i=1}^{n} \int_{0}^{+\infty} EC_i[k, T] \, d\nu_i(k)
 \]

 - The \(\nu \) corresponding with the comonotonic UB:

 - For each \(i \), buy \(w_i \) European calls \(EC_i[k, T] \),
Upperbounds for the basket option:

The comonotonic upperbound:

\[BC(K, T) \leq e^{-\delta T} E \left[(S^c - K)_+ \right] \]

The price of any \(\nu \in \mathcal{A}_K \) is an upperbound for \(BC(K, T) \).

Theorem

The comonotonic UB is the price of the cheapest super-replicating strategy in \(\mathcal{A}_K \):

\[e^{-\delta T} E \left[(S^c - K)_+ \right] = \min_{\nu \in \mathcal{A}_K} \sum_{i=1}^{n} \int_{0}^{+\infty} \nu_i(k) \, EC_i[k, T] \, d\nu_i(k) \]

The \(\nu \) corresponding with the comonotonic UB:

For each \(i \), buy \(\nu_i \) European calls \(EC_i \left[F_{\Delta+1} \left(F_{c}(nK) \right), T \right] \).
8. Exotic options
8.4. The cheapest super-replicating strategy

- **Upperbounds for the basket option:**
 - The comonotonic upperbound:
 \[
 BC(K, T) \leq e^{-\delta T} E \left[(S^c - K)_+ \right]
 \]
 - The price of any \(\nu \in \mathcal{A}_K \) is an upperbound for \(BC(K, T) \).

- **Theorem**
 - The comonotonic UB is the price of the cheapest super-replicating strategy in \(\mathcal{A}_K \):
 \[
 e^{-\delta T} E \left[(S^c - K)_+ \right] = \min_{\nu \in \mathcal{A}_K} \left\{ \sum_{i=1}^{n} \int_{0}^{+\infty} EC_i[k, T] \, d\nu_i(k) \right\}
 \]
 - The \(\nu \) corresponding with the comonotonic UB:
 - For each \(i \), buy \(w_i \) European calls \(EC_i \left[F_{A_i(T)}(F_{S^c}(nK)), T \right] \).
8. Exotic options
8.4. The cheapest super-replicating strategy

Upperbounds for the basket option:

The comonotonic upperbound:

$$BC(K, T) \leq e^{-\delta T} E \left[(S^c - K)_+ \right]$$

The price of any $\nu \in A_K$ is an upperbound for $BC(K, T)$.

Theorem

The comonotonic UB is the price of the cheapest super-replicating strategy in A_K:

$$e^{-\delta T} E \left[(S^c - K)_+ \right] = \min_{\nu \in A_K} \sum_{i=1}^{n} \int_{0}^{+\infty} EC_i [k, T] \, d\nu_i(k)$$

The ν corresponding with the comonotonic UB:

For each i, buy w_i European calls $EC_i \left[F_{A_i(T)}(F_{S^c}(nK)), T \right]$.
8. Exotic options
8.4. The cheapest super-replicating strategy

- **Upperbounds for the basket option:**
 - The comonotonic upperbound:
 \[BC(K, T) \leq e^{-\delta T} E\left[(S^c - K)_+\right] \]
 - The price of any \(\nu \in \mathcal{A}_K \) is an upperbound for \(BC(K, T) \).

- **Theorem**
 - The comonotonic UB is the price of the cheapest super-replicating strategy in \(\mathcal{A}_K \):
 \[e^{-\delta T} E\left[(S^c - K)_+\right] = \min_{\nu \in \mathcal{A}_K} \sum_{i=1}^{n} \int_{0}^{+\infty} EC_i[k, T] \, d\nu_i(k) \]
 - The \(\nu \) corresponding with the comonotonic UB:
 - For each \(i \), buy \(w_i \) European calls \(EC_i\left[F_{A_i(T)}^{-1}(F_{S^c}(nK)), T\right]. \)
8. Exotic options

8.4. The cheapest super-replicating strategy

- **Upperbounds for the basket option:**
 - The comonotonic upperbound:
 \[BC(K, T) \leq e^{-\delta T} E \left[(S^c - K)_+ \right] \]
 - The price of any \(\nu \in \mathcal{A}_K \) is an upperbound for \(BC(K, T) \).

- **Theorem**
 - The comonotonic UB is the price of the cheapest super-replicating strategy in \(\mathcal{A}_K \):
 \[
 e^{-\delta T} E \left[(S^c - K)_+ \right] = \min_{\nu \in \mathcal{A}_K} \sum_{i=1}^{n} \int_{0}^{+\infty} EC_i[k, T] \, d\nu_i(k)
 \]
 - The \(\nu \) corresponding with the comonotonic UB:
 - For each \(i \), buy \(w_i \) European calls \(EC_i \left[F_{A_i(T)}(F_{S^c}(nK)), T \right] \).
8. Exotic options
8.5. A worst-case expectation

- The Fréchet class \mathcal{R}_n:

$$\mathcal{R}_n = \left\{ F_Y \mid F_{Y_i}(x) = F_{A_i(T)}(x); x \geq 0, i = 1, \ldots, n \right\}$$

- Theorem:

The comonotonic UB is the worst-case expectation in \mathcal{R}_n:

$$e^{-\delta T} E \left[(S^c - K)_+ \right] = \max_{F_Y \in \mathcal{R}_n} e^{-\delta T} E \left[\left(\sum_{i=1}^{n} w_i Y_i - K \right)_+ \right]$$
8. Exotic options

8.5. A worst-case expectation

The Fréchet class \mathcal{R}_n:

$$\mathcal{R}_n = \left\{ F_Y \mid F_{Y_i}(x) = F_{A_i(T)}(x); x \geq 0, i = 1, \ldots, n \right\}$$

Theorem:

The comonotonic UB is the worst-case expectation in \mathcal{R}_n:

$$e^{-\delta T} E \left[(S^c - K)_+ \right] = \max_{F_Y \in \mathcal{R}_n} e^{-\delta T} E \left[\left(\sum_{i=1}^{n} w_i Y_i - K \right)_+ \right]$$
8. Exotic options
8.5. A worst-case expectation

- The Fréchet class \mathcal{R}_n:

$$\mathcal{R}_n = \left\{ F_Y \mid F_{Y_i}(x) = F_{A_i(T)}(x); \ x \geq 0, \ i = 1, \ldots, n \right\}$$

- Theorem:

 - The comonotonic UB is the worst-case expectation in \mathcal{R}_n:

$$e^{-\delta T} E \left[(S^c - K)_+ \right] = \max_{F_Y \in \mathcal{R}_n} e^{-\delta T} E \left[\left(\sum_{i=1}^{n} w_i Y_i - K \right)_+ \right]$$
8. Exotic options
8.6. Remarks and generalizations

- The upper bound is "model-free":
 - It can be determined for any given model of the stock prices.
 - It can be determined from observed European call prices.

- Asian call options:
 - Pay-off at time T:
 \[
 \text{Pay-off} = \left(\frac{1}{n} \sum_{i=0}^{n-1} A(T - i) - K \right)_+
 \]
 - Price at time 0:
 \[
 AC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A(T - i) - K \right)_+ \right]
 \]
 - Upper bound:
 \[
 AC[K, T] \leq e^{-\delta T} \mathbb{E} \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A^c(T - i) - K \right)_+ \right]
 \]
8. Exotic options

8.6. Remarks and generalizations

- **The upper bound is "model-free":**
 - It can be determined for any given model of the stock prices.
 - It can be determined from observed European call prices.

- **Asian call options:**
 - **Pay-off at time T:**
 \[
 \text{Pay-off} = \left(\frac{1}{n} \sum_{i=0}^{n-1} A(T-i) - K \right)_+
 \]
 - **Price at time 0:**
 \[
 AC[K, T] = e^{-\delta T} E \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A(T-i) - K \right)_+ \right]
 \]
 - **Upper bound:**
 \[
 AC[K, T] \leq e^{-\delta T} E \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A^c(T-i) - K \right)_+ \right]
 \]
8. Exotic options

8.6. Remarks and generalizations

- **The upper bound is "model-free":**
 - It can be determined for any given model of the stock prices.
 - It can be determined from observed European call prices.

Asian call options:

- **Pay-off at time T:**
 \[
 \text{Pay-off} = \left(\frac{1}{n} \sum_{i=0}^{n-1} A(T - i) - K \right)_+
 \]

- **Price at time 0:**
 \[
 AC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A(T - i) - K \right)_+ \right]
 \]

- **Upper bound:**
 \[
 AC[K, T] \leq e^{-\delta T} \mathbb{E} \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A^c(T - i) - K \right)_+ \right]
 \]
8. Exotic options

8.6. Remarks and generalizations

- **The upper bound is "model-free":**
 - It can be determined for any given model of the stock prices.
 - It can be determined from observed European call prices.

- **Asian call options:**
 - **Pay-off at time** T:
 \[
 \text{Pay-off} = \left(\frac{1}{n} \sum_{i=0}^{n-1} A(T - i) - K \right)_+
 \]
 - **Price at time 0:**
 \[
 AC[K, T] = e^{-\delta T} E \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A(T - i) - K \right)_+ \right]
 \]
 - **Upper bound:**
 \[
 AC[K, T] \leq e^{-\delta T} E \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A^c(T - i) - K \right)_+ \right]
 \]
8. Exotic options
8.6. Remarks and generalizations

- **The upper bound is "model-free":**
 - It can be determined for any given model of the stock prices.
 - It can be determined from observed European call prices.

- **Asian call options:**
 - **Pay-off at time** \(T \):
 \[
 \text{Pay-off} = \left(\frac{1}{n} \sum_{i=0}^{n-1} A(T - i) - K \right)_+
 \]
 - **Price at time 0:**
 \[
 AC[K, T] = e^{-\delta T} \ E \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A(T - i) - K \right)_+ \right]
 \]
 - **Upper bound:**
 \[
 AC[K, T] \leq e^{-\delta T} \ E \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A^c(T - i) - K \right)_+ \right]
 \]
8. Exotic options

8.6. Remarks and generalizations

- The upper bound is "model-free":
 - It can be determined for any given model of the stock prices.
 - It can be determined from observed European call prices.

- **Asian call options:**
 - Pay-off at time T:

 $$\text{Pay-off} = \left(\frac{1}{n} \sum_{i=0}^{n-1} A(T - i) - K \right)_+$$

 - **Price at time 0:**

 $$AC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A(T - i) - K \right)_+ \right]$$

 - **Upper bound:**

 $$AC[K, T] \leq e^{-\delta T} \mathbb{E} \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A^c(T - i) - K \right)_+ \right]$$
8. Exotic options
8.6. Remarks and generalizations

- The upper bound is "model-free":
 - It can be determined for any given model of the stock prices.
 - It can be determined from observed European call prices.

- Asian call options:
 - Pay-off at time T:
 \[
 \text{Pay-off} = \left(\frac{1}{n} \sum_{i=0}^{n-1} A(T - i) - K \right)_+ \]
 - Price at time 0:
 \[
 AC[K, T] = e^{-\delta T} \mathbb{E} \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A(T - i) - K \right)_+ \right] \]
 - Upper bound:
 \[
 AC[K, T] \leq e^{-\delta T} \mathbb{E} \left[\left(\frac{1}{n} \sum_{i=0}^{n-1} A^c(T - i) - K \right)_+ \right] \]
8. Exotic options
8.6. Remarks and generalizations (cont’d)

► **Generalization to the finite market case.**
 (Hobson et al., 2005; Chen et al., 2008).

► **Available European calls on stock i:**

![Diagram of available European calls on stock i.]
8. Exotic options

8.6. Remarks and generalizations (cont’d)

- **Generalization to the finite market case.**
 (Hobson et al., 2005; Chen et al., 2008).

- **Available European calls on stock i:**

![Diagram showing available European calls on stock i]
Exotic options

8.7. Numerical illustration: Asian call options

- Risk-free interest rate \(e^{\delta} - 1 = 9\% \) per year.
- \(\{A(t)\} \): geometric Brownian motion with \(A(0) = 100 \) and volatility per year \(\sigma = 0.2 \).
- \(n = 10 \) days, \(T = \text{day 120} \).
- Comonotonic upper bounds for Asian call option prices:

<table>
<thead>
<tr>
<th>K</th>
<th>LB</th>
<th>MC (s.e. (\times 10^4))</th>
<th>UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>22.1712</td>
<td>22.1712 (0.85)</td>
<td>22.1735</td>
</tr>
<tr>
<td>90</td>
<td>13.0085</td>
<td>13.0083 (0.81)</td>
<td>13.0232</td>
</tr>
<tr>
<td>100</td>
<td>5.8630</td>
<td>5.8629 (0.75)</td>
<td>5.8934</td>
</tr>
<tr>
<td>110</td>
<td>1.9169</td>
<td>1.9168 (0.59)</td>
<td>1.9442</td>
</tr>
<tr>
<td>120</td>
<td>0.4534</td>
<td>0.4533 (0.33)</td>
<td>0.4665</td>
</tr>
</tbody>
</table>
Exotic options

8.7. Numerical illustration: Asian call options

- Risk-free interest rate $= e^\delta - 1 = 9\%$ per year.
- $\{A(t)\}$: geometric Brownian motion with $A(0) = 100$ and volatility per year $\sigma = 0.2$.
- $n = 10$ days, $T = \text{day 120}$.
- Comonotonic upper bounds for Asian call option prices:

<table>
<thead>
<tr>
<th>K</th>
<th>LB</th>
<th>MC (s.e. $\times 10^4$)</th>
<th>UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>22.1712</td>
<td>22.1712 (0.85)</td>
<td>22.1735</td>
</tr>
<tr>
<td>90</td>
<td>13.0085</td>
<td>13.0083 (0.81)</td>
<td>13.0232</td>
</tr>
<tr>
<td>100</td>
<td>5.8630</td>
<td>5.8629 (0.75)</td>
<td>5.8934</td>
</tr>
<tr>
<td>110</td>
<td>1.9169</td>
<td>1.9168 (0.59)</td>
<td>1.9442</td>
</tr>
<tr>
<td>120</td>
<td>0.4534</td>
<td>0.4533 (0.33)</td>
<td>0.4665</td>
</tr>
</tbody>
</table>
Exotic options

8.7. Numerical illustration: Asian call options

- Risk-free interest rate $= e^\delta - 1 = 9\%$ per year.
- $\{A(t)\}$: geometric Brownian motion with $A(0) = 100$ and volatility per year $\sigma = 0.2$.
- $n = 10$ days, $T =$ day 120.
- Comonotonic upper bounds for Asian call option prices:

<table>
<thead>
<tr>
<th>K</th>
<th>LB</th>
<th>MC (s.e. × 10^4)</th>
<th>UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>22.1712</td>
<td>22.1712 (0.85)</td>
<td>22.1735</td>
</tr>
<tr>
<td>90</td>
<td>13.0085</td>
<td>13.0083 (0.81)</td>
<td>13.0232</td>
</tr>
<tr>
<td>100</td>
<td>5.8630</td>
<td>5.8629 (0.75)</td>
<td>5.8934</td>
</tr>
<tr>
<td>110</td>
<td>1.9169</td>
<td>1.9168 (0.59)</td>
<td>1.9442</td>
</tr>
<tr>
<td>120</td>
<td>0.4534</td>
<td>0.4533 (0.33)</td>
<td>0.4665</td>
</tr>
</tbody>
</table>
Exotic options

8.7. Numerical illustration: Asian call options

- Risk-free interest rate $= e^{\delta} - 1 = 9\%$ per year.
- $\{A(t)\}$: geometric Brownian motion with $A(0) = 100$ and volatility per year $\sigma = 0.2$.
- $n = 10$ days, $T = \text{day 120}$.

- Comonotonic upper bounds for Asian call option prices:

<table>
<thead>
<tr>
<th>K</th>
<th>LB</th>
<th>MC (s.e. $\times 10^4$)</th>
<th>UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>22.1712</td>
<td>22.1712 (0.85)</td>
<td>22.1735</td>
</tr>
<tr>
<td>90</td>
<td>13.0085</td>
<td>13.0083 (0.81)</td>
<td>13.0232</td>
</tr>
<tr>
<td>100</td>
<td>5.8630</td>
<td>5.8629 (0.75)</td>
<td>5.8934</td>
</tr>
<tr>
<td>110</td>
<td>1.9169</td>
<td>1.9168 (0.59)</td>
<td>1.9442</td>
</tr>
<tr>
<td>120</td>
<td>0.4534</td>
<td>0.4533 (0.33)</td>
<td>0.4665</td>
</tr>
</tbody>
</table>
9. The continuous perpetuity

- Let $B(\tau)$ be a standard Wiener process.
- A continuous perpetuity: (Dufresne, 1989; Milevsky, 1997) = an eternal continuous payment of 1 per year.
- The single premium π for the continuous perpetuity:
 - π is invested in a fund with cumulative return over $(0, \tau)$ given by
 \[\exp [\mu \tau + \sigma B(\tau)] \]
 - Stochastic present value of the perpetuity liabilities:
 \[S = \int_0^\infty \exp [-\mu \tau - \sigma B(\tau)] \, d\tau \]
 - $\pi = Q_p[S]$ with p sufficiently large.
- Approximate π by $Q_p[S']$.
9. The continuous perpetuity

- Let $B(\tau)$ be a standard Wiener process.

- **A continuous perpetuity**: (Dufresne, 1989; Milevsky, 1997)
 = an eternal continuous payment of 1 per year.

- The single premium π for the continuous perpetuity:
 - π is invested in a fund with cumulative return over $(0, \tau)$ given by
 \[\exp[\mu \tau + \sigma B(\tau)] \]
 - Stochastic present value of the perpetuity liabilities:
 \[S = \int_0^\infty \exp[-\mu \tau - \sigma B(\tau)] \, d\tau \]
 - $\pi = Q_p[S]$ with p sufficiently large.

- Approximate π by $Q_p[S']$.
9. The continuous perpetuity

- Let $B(\tau)$ be a standard Wiener process.
- A continuous perpetuity: (Dufresne, 1989; Milevsky, 1997) = an eternal continuous payment of 1 per year.
- The single premium π for the continuous perpetuity:
 - π is invested in a fund with cumulative return over $(0, \tau)$ given by
 $$\exp[\mu \tau + \sigma B(\tau)]$$
 - Stochastic present value of the perpetuity liabilities:
 $$S = \int_0^{\infty} \exp[-\mu \tau - \sigma B(\tau)] \, d\tau$$
 - $\pi = Q_p[S]$ with p sufficiently large.
 - Approximate π by $Q_p[S']$.

9. The continuous perpetuity

- Let $B(\tau)$ be a standard Wiener process.
- A continuous perpetuity: (Dufresne, 1989; Milevsky, 1997) = an eternal continuous payment of 1 per year.
- The single premium π for the continuous perpetuity:
 - π is invested in a fund with cumulative return over $(0, \tau)$ given by
 \[\exp[\mu \tau + \sigma B(\tau)] \]
 - Stochastic present value of the perpetuity liabilities:
 \[S = \int_0^\infty \exp[-\mu \tau - \sigma B(\tau)] \, d\tau \]
 - $\pi = Q_p[S]$ with p sufficiently large.
- Approximate π by $Q_p[S']$.
9. The continuous perpetuity

- Let \(B(\tau) \) be a standard Wiener process.
- A continuous perpetuity: (Dufresne, 1989; Milevsky, 1997) = an eternal continuous payment of 1 per year.
- The single premium \(\pi \) for the continuous perpetuity:
 - \(\pi \) is invested in a fund with cumulative return over \((0, \tau)\) given by
 \[
 \exp \left[\mu \tau + \sigma B(\tau) \right]
 \]
 - Stochastic present value of the perpetuity liabilities:
 \[
 S = \int_0^\infty \exp \left[-\mu \tau - \sigma B(\tau) \right] d\tau
 \]
 - \(\pi = Q_p[S] \) with \(p \) sufficiently large.
- Approximate \(\pi \) by \(Q_p[S'] \).
9. The continuous perpetuity

- Let $B(\tau)$ be a standard Wiener process.
- A continuous perpetuity: (Dufresne, 1989; Milevsky, 1997) = an eternal continuous payment of 1 per year.
- The single premium π for the continuous perpetuity:
 - π is invested in a fund with cumulative return over $(0, \tau)$ given by
 $$\exp[\mu \tau + \sigma B(\tau)]$$
 - Stochastic present value of the perpetuity liabilities:
 $$S = \int_0^\infty \exp[-\mu \tau - \sigma B(\tau)] \, d\tau$$
 - $\pi = Q_p[S]$ with p sufficiently large.
- Approximate π by $Q_p[S']$.
9. The continuous perpetuity

- Let $B(\tau)$ be a standard Wiener process.
- A continuous perpetuity: (Dufresne, 1989; Milevsky, 1997) $= \text{an eternal continuous payment of 1 per year.}$
- The single premium π for the continuous perpetuity:
 - π is invested in a fund with cumulative return over $(0, \tau)$ given by
 \[
 \exp [\mu \tau + \sigma B(\tau)]
 \]
 - Stochastic present value of the perpetuity liabilities:
 \[
 S = \int_0^\infty \exp [-\mu \tau - \sigma B(\tau)] \, d\tau
 \]
 - $\pi = Q_p[S]$ with p sufficiently large.
- Approximate π by $Q_p[S^l]$.
The continuous perpetuity (cont’d)

- **Numerical illustration:** \(\mu = 0.07 \) and \(\sigma = 0.1 \).
 - \(\Box = (Q_p[S], Q_p[S^c]) \).
 - \(\bigcirc = (Q_p[S], Q_p[S^l]) \).
Numerical illustration: $\mu = 0.07$ and $\sigma = 0.1$.

$\square = (Q_p[S], Q_p[S^c])$.

$\bigcirc = (Q_p[S], Q_p[S^l])$.
The continuous perpetuity (cont’d)

- **Numerical illustration:** $\mu = 0.07$ and $\sigma = 0.1$.
 - □ = $(Q_p[S], Q_p[S^c])$.
 - ○ = $(Q_p[S], Q_p[S^l])$.

![Graph showing numerical illustration](image)
Generalizations and applications

- **Provisions for random future liabilities:**

- **The ‘final wealth problem’:**

 Dhaene et al. (2005).

- **Stochastic sums:**

 Hoedemakers et al. (2007).

- **Positive and negative payments:**

 Vanduffel et al. (2005), Vanweert et al. (2009).

- **Other distributions:**

 Albrecher et al. (2005), Valdez et al. (2009).

- **Survival probabilities in the Lee-Carter model:**

 Denuit et al. (2007).

- **Measuring the degree of comonotonicity:**

 Koch & De Schepper (2007).

- **Conditional comonotonicity, multivariate comonotonicity, upper comonotonicity:**

 Cheung (2007), and others.
Generalizations and applications

- **Provisions for random future liabilities:**

- **The ’final wealth problem’:**
 - Dhaene et al. (2005).

- **Stochastic sums:**
 - Hoedemakers et al. (2007).

- **Positive and negative payments:**
 - Vanduffel et al. (2005), Vanweert et al. (2009).

- **Other distributions:**
 - Albrecher et al. (2005), Valdez et al. (2009).

- **Survival probabilities in the Lee-Carter model:**
 - Denuit et al. (2007).

- **Measuring the degree of comonotonicity:**
 - Koch & De Schepper (2007).

- **Conditional comonotonicity, multivariate comonotonicity, upper comonotonicity:**
 - Cheung (2007), and others.
Generalizations and applications

- **Provisions for random future liabilities:**

- **The 'final wealth problem':**
 Dhaene et al. (2005).

- **Stochastic sums:**
 Hoedemakers et al. (2007).

- **Positive and negative payments:**
 Vanduffel et al. (2005), Vanweert et al. (2009)

- **Other distributions:**
 Albrecher et al. (2005), Valdez et al. (2009).

- **Survival probabilities in the Lee-Carter model:**
 Denuit et al. (2007).

- **Measuring the degree of comonotonicity:**
 Koch & De Schepper (2007).

- **Conditional comonotonicity, multivariate comonotonicity, upper comonotonicity:**
 Cheung (2007), and others.
Generalizations and applications

- **Provisions for random future liabilities:**

- **The 'final wealth problem':**
 Dhaene et al. (2005).

- **Stochastic sums:**
 Hoedemakers et al. (2007).

- **Positive and negative payments:**
 Vanduffel et al. (2005), Vanweert et al. (2009)

- **Other distributions:**
 Albrecher et al. (2005), Valdez et al. (2009).

- **Survival probabilities in the Lee-Carter model:**
 Denuit et al. (2007).

- **Measuring the degree of comonotonicity:**
 Koch & De Schepper (2007).

- **Conditional comonotonicity, multivariate comonotonicity, upper comonotonicity:**
 Cheung (2007), and others.
Generalizations and applications

- **Provisions for random future liabilities:**

- **The 'final wealth problem':**
 Dhaene et al. (2005).

- **Stochastic sums:**
 Hoedemakers et al. (2007).

- **Positive and negative payments:**
 Vanduffel et al. (2005), Vanweert et al. (2009).

- **Other distributions:**
 Albrecher et al. (2005), Valdez et al. (2009).

- **Survival probabilities in the Lee-Carter model:**
 Denuit et al. (2007).

- **Measuring the degree of comonotonicity:**
 Koch & De Schepper (2007).

- **Conditional comonotonicity, multivariate comonotonicity, upper comonotonicity:**
 Cheung (2007), and others.
Generalizations and applications

- **Provisions for random future liabilities:**

- **The 'final wealth problem':**
 Dhaene et al. (2005).

- **Stochastic sums:**
 Hoedemakers et al. (2007).

- **Positive and negative payments:**
 Vanduffel et al. (2005), Vanweert et al. (2009).

- **Other distributions:**
 Albrecher et al. (2005), Valdez et al. (2009).

- **Survival probabilities in the Lee-Carter model:**
 Denuit et al. (2007).

- **Measuring the degree of comonotonicity:**
 Koch & De Schepper (2007).

- **Conditional comonotonicity, multivariate comonotonicity, upper comonotonicity:**
 Cheung (2007), and others.
Generalizations and applications

- **Provisions for random future liabilities:**

- **The 'final wealth problem':**

 Dhaene et al. (2005).

- **Stochastic sums:**

 Hoedemakers et al. (2007).

- **Positive and negative payments:**

 Vanduffel et al. (2005), Vanweert et al. (2009).

- **Other distributions:**

 Albrecher et al. (2005), Valdez et al. (2009).

- **Survival probabilities in the Lee-Carter model:**

 Denuit et al. (2007).

- **Measuring the degree of comonotonicity:**

 Koch & De Schepper (2007).

- **Conditional comonotonicity, multivariate comonotonicity, upper comonotonicity:**

 Cheung (2007), and others.
Generalizations and applications

- **Provisions for random future liabilities:**

- **The 'final wealth problem':**
 Dhaene et al. (2005).

- **Stochastic sums:**
 Hoedemakers et al. (2007).

- **Positive and negative payments:**
 Vanduffel et al. (2005), Vanweert et al. (2009)

- **Other distributions:**
 Albrecher et al. (2005), Valdez et al. (2009).

- **Survival probabilities in the Lee-Carter model:**
 Denuit et al. (2007).

- **Measuring the degree of comonotonicity:**
 Koch & De Schepper (2007).

- **Conditional comonotonicity, multivariate comonotonicity, upper comonotonicity:**
 Cheung (2007), and others.

References (cont’d)

References (cont’d)

References (cont’d)

